ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose a theoretical framework based on $SU(3)$ coherent states as a convenient tool to describe the collective state of a Bose-Einstein condensate of spin 1 atoms at thermal equilibrium. We work within the single-mode approximation, which assume s that all atoms condense in the same spatial mode. In this system, the magnetization $m_z$ is conserved to a very good approximation. This conservation law is included by introducing a prior distribution for $m_z$ and constructing a generalized statistical ensemble that preserves its first moments. In the limit of large particle numbers, we construct the partition function at thermal equilibrium and use it to compute various quantities of experimental interest, such as the probability distribution function and moments of the population in each Zeeman state. When $N$ is large but finite (as in typical experiments, where $Nsim 10^3-10^5$), we find that fluctuations of the collective spin can be important.
We analyze the formation of squeezed states in a condensate of ultracold bosonic atoms confined by a double-well potential. The emphasis is set on the dynamical formation of such states from initially coherent many-body quantum states. Two cases are described: the squeezing formation in the evolution of the system around the stable point, and in the short time evolution in the vicinity of an unstable point. The latter is shown to produce highly squeezed states on very short times. On the basis of a semiclassical approximation to the Bose-Hubbard Hamiltonian, we are able to predict the amount of squeezing, its scaling with $N$ and the speed of coherent spin formation with simple analytical formulas which successfully describe the numerical Bose-Hubbard results. This new method of producing highly squeezed spin states in systems of ultracold atoms is compared to other standard methods in the literature.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا