ترغب بنشر مسار تعليمي؟ اضغط هنا

We present an update to seven stars with long-period planets or planetary candidates using new and archival radial velocities from Keck-HIRES and literature velocities from other telescopes. Our updated analysis better constrains orbital parameters f or these planets, four of which are known multi-planet systems. HD 24040 b and HD 183263 c are super-Jupiters with circular orbits and periods longer than 8 yr. We present a previously unseen linear trend in the residuals of HD 66428 indicative on an additional planetary companion. We confirm that GJ 849 is a multi-planet system and find a good orbital solution for the c component: it is a $1 M_{rm Jup}$ planet in a 15 yr orbit (the longest known for a planet orbiting an M dwarf). We update the HD 74156 double-planet system. We also announce the detection of HD 145934 b, a $2 M_{rm Jup}$ planet in a 7.5 yr orbit around a giant star. Two of our stars, HD 187123 and HD 217107, at present host the only known examples of systems comprising a hot Jupiter and a planet with a well constrained period $> 5$ yr, and with no evidence of giant planets in between. Our enlargement and improvement of long-period planet parameters will aid future analysis of origins, diversity, and evolution of planetary systems.
The Exoplanet Orbit Database (EOD) compiles orbital, transit, host star, and other parameters of robustly detected exoplanets reported in the peer-reviewed literature. The EOD can be navigated through the Exoplanet Data Explorer (EDE) Plotter and Tab le, available on the World Wide Web at exoplanets.org. The EOD contains data for 1492 confirmed exoplanets as of July 2014. The EOD descends from a table in Butler et al. (2002) and the Catalog of Nearby Exoplanets (Butler et al. 2006), and the first complete documentation for the EOD and the EDE was presented in Wright et al. (2011). In this work, we describe our work since then. We have expanded the scope of the EOD to include secondary eclipse parameters, asymmetric uncertainties, and expanded the EDE to include the sample of over 3000 Kepler Objects of Interest (KOIs), and other real planets without good orbital parameters (such as many of those detected by microlensing and imaging). Users can download the latest version of the entire EOD as a single comma separated value file from the front page of exoplanets.org.
The goal of this paper is to establish the requirements of a barycentric correction with an RMS of $lesssim 1$ cm/s, which is an order of magnitude better than necessary for the Doppler detection of true Earth analogs ($sim9$ cm/s). We describe the t heory and implementation of accounting for the effects on precise Doppler measurements of motion of the telescope through space, primarily from rotational and orbital motion of the Earth, and the motion of the solar system with respect to target star (i.e. the barycentric correction). We describe the minimal algorithm necessary to accomplish this and how it differs from a naive subtraction of velocities (i.e. a Galilean transformation). We demonstrate the validity of code we have developed from the California Planet Survey code via comparison with the pulsar timing package, TEMPO2. We estimate the magnitude of various terms and effects, including relativistic effects, and the errors associated with incomplete knowledge of telescope position, timing, and stellar position and motion. We note that chromatic aberration will create uncertainties in the time of observation, which will complicate efforts to detect true Earth analogs. Our code is available for public use and validation.
We describe the framework and strategy of the ^G infrared search for extraterrestrial civilizations with large energy supplies, which will use the wide-field infrared surveys of WISE and Spitzer to search for these civilizations waste heat. We develo p a formalism for translating mid-infrared photometry into quantitative upper limits on extraterrestrial energy supplies. We discuss the likely sources of false positives, how dust can and will contaminate our search, and prospects for distinguishing dust from alien waste heat. We argue that galaxy-spanning civilizations may be easier to distinguish from natural sources than circumstellar civilizations (i.e., Dyson spheres), although Gaia will significantly improve our capability to identify the latter. We present a zeroth order null result of our search based on the WISE all-sky catalog: we show, for the first time, that Kardashev Type III civilizations (as Kardashev originally defined them) are very rare in the local universe. More sophisticated searches can extend our methodology to smaller waste heat luminosities, and potentially entirely rule out (or detect) both Kardashev Type III civilizations and new physics that allows for unlimited free energy generation.
We motivate the ^G infrared search for extraterrestrial civilizations with large energy supplies. We discuss some philosophical difficulties of SETI, and how communication SETI circumvents them. We review Dysonian SETI, the search for artifacts of al ien civilizations, and find that it is highly complementary to traditional communication SETI; the two together might succeed where either one, alone, has not. We discuss the argument of Hart (1975) that spacefaring life in the Milky Way should be either galaxy-spanning or non-existent, and examine a portion of his argument that we dub the monocultural fallacy. We discuss some rebuttals to Hart that invoke sustainability and predict long Galaxy colonization timescales. We find that the maximum Galaxy colonization timescale is actually much shorter than previous work has found ($< 10^9$ yr), and that many sustainability counter-arguments to Harts thesis suffer from the monocultural fallacy. We extend Harts argument to alien energy supplies, and argue that detectably large energy supplies can plausibly be expected to exist because life has potential for exponential growth until checked by resource or other limitations, and intelligence implies the ability to overcome such limitations. As such, if Harts thesis is correct then searches for large alien civilizations in other galaxies may be fruitful; if it is incorrect, then searches for civilizations within the Milky Way are more likely to succeed than Hart argued. We review some past Dysonian SETI efforts, and discuss the promise of new mid-infrared surveys, such as that of WISE.
67 - Arpita Roy , Jason T. Wright , 2014
The lunar farside highlands problem refers to the curious and unexplained fact that the farside lunar crust is thicker, on average, than the nearside crust. Here we recognize the crucial influence of Earthshine, and propose that it naturally explains this hemispheric dichotomy. Since the accreting Moon rapidly achieved synchronous rotation, a surface and atmospheric thermal gradient was imposed by the proximity of the hot, post-Giant-Impact Earth. This gradient guided condensation of atmospheric and accreting material, preferentially depositing crust-forming refractories on the cooler farside, resulting in a primordial bulk chemical inhomogeneity that seeded the crustal asymmetry. Our model provides a causal solution to the lunar highlands problem: the thermal gradient created by Earthshine produced the chemical gradient responsible for the crust thickness dichotomy that defines the lunar highlands.
We report the radial-velocity discovery of a second planetary mass companion to the K0 V star HD 37605, which was already known to host an eccentric, P~55 days Jovian planet, HD 37605b. This second planet, HD 37605c, has a period of ~7.5 years with a low eccentricity and an Msini of ~3.4 MJup. Our discovery was made with the nearly 8 years of radial velocity follow-up at the Hobby-Eberly Telescope and Keck Observatory, including observations made as part of the Transit Ephemeris Refinement and Monitoring Survey (TERMS) effort to provide precise ephemerides to long-period planets for transit follow-up. With a total of 137 radial velocity observations covering almost eight years, we provide a good orbital solution of the HD 37605 system, and a precise transit ephemeris for HD 37605b. Our dynamic analysis reveals very minimal planet-planet interaction and an insignificant transit time variation. Using the predicted ephemeris, we performed a transit search for HD 37605b with the photometric data taken by the T12 0.8-m Automatic Photoelectric Telescope (APT) and the Microvariability and Oscillations of Stars (MOST) satellite. Though the APT photometry did not capture the transit window, it characterized the stellar activity of HD 37605, which is consistent of it being an old, inactive star, with a tentative rotation period of 57.67 days. The MOST photometry enabled us to report a dispositive null detection of a non-grazing transit for this planet. Within the predicted transit window, we exclude an edge-on predicted depth of 1.9% at >>10sigma, and exclude any transit with an impact parameter b>0.951 at greater than 5sigma. We present the BOOTTRAN package for calculating Keplerian orbital parameter uncertainties via bootstrapping. We found consistency between our orbital parameters calculated by the RVLIN package and error bars by BOOTTRAN with those produced by a Bayesian analysis using MCMC.
We determine the fraction of F, G, and K dwarfs in the Solar Neighborhood hosting hot jupiters as measured by the California Planet Survey from the Lick and Keck planet searches. We find the rate to be 1.2pm0.38%, which is consistent with the rate re ported by Mayor et al. (2011) from the HARPS and CORALIE radial velocity surveys. These numbers are more than double the rate reported by Howard et al. (2011) for Kepler stars and the rate of Gould et al. (2006) from the OGLE-III transit search, however due to small number statistics these differences are of only marginal statistical significance. We explore some of the difficulties in estimating this rate from the existing radial velocity data sets and comparing radial velocity rates to rates from other techniques.
We present new radial velocities from Keck Observatory and both Newtonian and Keplerian solutions for the triple-planet system orbiting HD 37124. The orbital solution for this system has improved dramatically since the third planet was first reported in Vogt et al. 2005 with an ambiguous orbital period. We have resolved this ambiguity, and the outer two planets have an apparent period commensurability of 2:1. A dynamical analysis finds both resonant and non-resonant configurations consistent with the radial velocity data, and constrains the mutual inclinations of the planets to be less than about 30 degrees. We discuss HD 37124 in the context of the other 19 exoplanetary systems with apparent period commenserabilities, which we summarize in a table. We show that roughly one in three well-characterized multiplanet systems has a apparent low-order period commensuribility, which is more than would naively be expected if the periods of exoplanets in known multiplanet systems were drawn randomly from the observed distribution of planetary orbital periods.
We present a database of well determined orbital parameters of exoplanets. This database comprises spectroscopic orbital elements measured for 427 planets orbiting 363 stars from radial velocity and transit measurements as reported in the literature. We have also compiled fundamental transit parameters, stellar parameters, and the method used for the planets discovery. This Exoplanet Orbit Database includes all planets with robust, well measured orbital parameters reported in peer-reviewed articles. The database is available in a searchable, filterable, and sortable form on the Web at http://exoplanets.org through the Exoplanets Data Explorer Table, and the data can be plotted and explored through the Exoplanets Data Explorer Plotter. We use the Data Explorer to generate publication-ready plots giving three examples of the signatures of exoplanet migration and dynamical evolution: We illustrate the character of the apparent correlation between mass and period in exoplanet orbits, the selection different biases between radial velocity and transit surveys, and that the multiplanet systems show a distinct semi-major axis distribution from apparently singleton systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا