ترغب بنشر مسار تعليمي؟ اضغط هنا

We report the first implementation of a Gauss sum factorization algorithm by an internal state Ramsey interferometer using cold atoms. A sequence of appropriately designed light pulses interacts with an ensemble of cold rubidium atoms. The final popu lation in the involved atomic levels determines a Gauss sum. With this technique we factor the number N=263193.
We present a compact $^{87}$Rb atomic source for high precision dual atom interferometers. The source is based on a double-stage magneto-optical trap (MOT) design, consisting of a 2-dimensional (2D)-MOT for efficient loading of a 3D-MOT. The accumula ted atoms are precisely launched in a horizontal moving molasses. Our setup generates a high atomic flux ($>10^{10}$ atoms/s) with precise and flexibly tunable atomic trajectories as required for high resolution Sagnac atom interferometry. We characterize the performance of the source with respect to the relevant parameters of the launched atoms, i.e. temperature, absolute velocity and pointing, by utilizing time-of-flight techniques and velocity selective Raman transitions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا