ترغب بنشر مسار تعليمي؟ اضغط هنا

The CLEAN algorithm, widely used in radio interferometry for the deconvolution of radio images, performs well only if the raw radio image (dirty image) is, to good approximation, a simple convolution between the instrumental point-spread function (di rty beam) and the true distribution of emission across the sky. An important case in which this approximation breaks down is during frequency synthesis if the observing bandwidth is wide enough for variations in the spectrum of the sky to become significant. The convolution assumption also breaks down, in any situation but snapshot observations, if sources in the field vary significantly in flux density over the duration of the observation. Such time-variation can even be instrumental in nature, for example due to jitter or rotation of the primary beam pattern on the sky during an observation. An algorithm already exists for dealing with the spectral variation encountered in wide-band frequency synthesis interferometry. This algorithm is an extension of CLEAN in which, at each iteration, a set of N `dirty beams are fitted and subtracted in parallel, instead of just a single dirty beam as in standard CLEAN. In the wide-band algorithm the beams are obtained by expanding a nominal source spectrum in a Taylor series, each term of the series generating one of the beams. In the present paper this algorithm is extended to images which contain sources which vary over both frequency and time. Different expansion schemes (or bases) on the time and frequency axes are compared, and issues such as Gibbs ringing and non-orthogonality are discussed. It is shown that practical considerations make it often desirable to orthogonalize the set of beams before commencing the cleaning. This is easily accomplished via a Gram-Schmidt technique.
52 - T. W. B. Muxlow 2010
A faint new radio source has been detected in the nuclear region of the starburst galaxy M82 using MERLIN radio observations designed to monitor the flux density evolution of the recent bright supernova SN2008iz. This new source was initially identif ied in observations made between 1-5th May 2009 but had not been present in observations made one week earlier, or in any previous observations of M82. In this paper we report the discovery of this new source and monitoring of its evolution over its first 9 months of existence. The true nature of this new source remains unclear, and we discuss whether this source may be an unusual and faint supernova, a supermassive blackhole associated with the nucleus of M82, or intriguingly the first detection of radio emission from an extragalactic microquasar.
49 - W. M. Goss 2008
We present MERLIN observations of Galactic 21-cm HI absorption at an angular resolution of c. 0.1-0.2 arcsec and a velocity resolution of 0.5 km/s, in the direction of three moderately low latitude (-8< b <-12 deg) extragalactic radio sources, 3C111, 3C123 and 3C161, all of which are heavily reddened. HI absorption is observed against resolved background emission sources up to c. 2 arcsec in extent and we distinguish details of the opacity distribution within 1-1.5 arcsec regions towards 3C~123 and 3C~161. This study is the second MERLIN investigation of small scale structure in interstellar HI (earlier work probed Galactic HI in the directions of the compact sources 3C138 and 3C147). The 0.1-arcsec scale is intermediate between HI absorption studies made with other fixed element interferometers with resolution of 1 to 10 arcsec and VLBI studies with resolutions of 10-20 milli-arcsec. At a scale of 1 arcsec (about 500 AU), prominent changes in Galactic HI opacity in excess of 1-1.5 are determined in the direction of 3C161 with a signal-to-noise ratio of at least 10 sigma. Possible fluctuations in the HI opacity at the level of about 1 are detected at the 2.5-3 sigma level in the direction of 3C123.
Using extremely deep (rms 3.3 microJy/bm) 1.4GHz sub-arcsecond resolution MERLIN + VLA radio observations of a 8.5 by 8.5 field centred upon the Hubble Deep Field North, in conjunction with Spitzer 24 micron data we present an investigation of the ra dio-MIR correlation at very low flux densities. By stacking individual sources within these data we are able to extend the MIR-radio correlation to the extremely faint (~microJy and even sub-microJy) radio source population. Tentatively we demonstrate a small deviation from the correlation for the faintest MIR sources. We suggest that this small observed change in the gradient of the correlation is the result of a suppression of the MIR emission in faint star-forming galaxies. This deviation potentially has significant implications for using either the MIR or non-thermal radio emission as a star-formation tracer at low luminosities.
In this paper we investigate the radio-MIR correlation at very low flux densities using extremely deep 1.4 GHz sub-arcsecond angular resolution MERLIN+VLA observations of a 8.5 by 8.5 field centred upon the Hubble Deep Field North, in conjunction wit h Spitzer 24micron data. From these results the MIR-radio correlation is extended to the very faint (~microJy) radio source population. Tentatively we detect a small deviation from the correlation at the faintest IR flux densities. We suggest that this small observed change in the gradient of the correlation is the result of a suppression of the MIR emission in faint star-forming galaxies. This deviation potentially has significant implications for using either the MIR or non-thermal radio emission as a star-formation tracer of very low luminosity galaxies.
The gravitational lens system CLASS B2108+213 has two lensed images separated by 4.56 arcsec. Such a wide image separation suggests that the lens is either a massive galaxy, or is composed of a group of galaxies. To investigate the structure of the l ensing potential we have carried out new high resolution imaging of the two lensed images at 1.7 GHz with the VLBA and at 5 GHz with global VLBI. Compact and extended emission is detected from the two lensed images, which provides additional constraints to the lensing mass model. We find that the data are consistent with either a single lensing galaxy, or a two galaxy lens model that takes account of a nearby companion to the main lensing galaxy within the Einstein radius of the system. However, for an ensemble of global power-law mass models, those with density profiles steeper than isothermal are a better fit. The best-fitting profile for a single spherical mass model has a slope of $gamma=$~2.45$_{-0.18}^{+0.19}$. The system also has a third radio component which is coincident with the main lensing galaxy. This component is detected at milli-arcsecond scales for the first time by the 1.7 GHz VLBA and 5 GHz global VLBI imaging. However, the third radio component is found not to be consistent with a core lensed image because the radio spectrum differs from the two lensed images, and its flux-density is too high when compared to what is expected from simple mass models with a variable power-law density profile and/or a reasonable core radius. Furthermore, 1.4 GHz imaging of the system with the MERLIN finds extended lobe emission on either side of the main lensing galaxy. Therefore, the radio emission from the third radio component is almost certainly from an AGN within the main lensing galaxy, which is classified as an FR I type radio source.
106 - A. M. S. Richards 2007
A 10-arcmin field around the HDF(N) contains 92 radio sources >40 uJy, resolved by MERLIN+VLA at 0.2-2.0 resolution. 55 have Chandra X-ray counterparts including 18 with a hard X-ray photon index and high luminosity characteristic of a type-II (obscu red) AGN. >70% of the radio sources have been classified as starbursts or AGN using radio morphologies, spectral indices and comparisons with optical appearance and MIR emission. Starbursts outnumber radio AGN 3:1. This study extends the VO methods previously used to identify X-ray-selected obscured type-II AGN to investigate whether very luminous radio and X-ray emission originates from different phenomena in the same galaxy. The high-redshift starbursts have typical sizes of 5--10 kpc and star formation rates of ~1000 Msun/yr. There is no correlation between radio and X-ray luminosities nor spectral indices at z>~1.3. ~70% of both the radio-selected AGN and the starburst samples were detected by Chandra. The X-ray luminosity indicates the presence of an AGN in at least half of the 45 cross-matched radio starbursts, of which 11 are type-II AGN including 7 at z>1.5. This distribution overlaps closely with the X-ray detected radio sources which were also detected by SCUBA. Stacked 1.4-GHz emission at the positions of radio-faint X-ray sources is correlated with X-ray hardness. Most extended radio starbursts at z>1.3 host X-ray selected obscured AGN. Radio emission from most of these ultra-luminous objects is dominated by star formation but it contributes less than 1/3 of their X-ray luminosity. Our results support the inferences from SCUBA and IR data, that at z>1.5, star formation is an order of magnitude more extended and more copious, it is closely linked to AGN activity and it is triggered differently, compared with star formation at lower redshifts.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا