ترغب بنشر مسار تعليمي؟ اضغط هنا

154 - T. Vieville , B. Cessac 2010
This paper has been withdrawn. Its main conclusions have been published in On dynamics of integrate-and-fi re neural networks with conductance based synapses, arXiv:0709.4370 and http://www.frontiersin.org/computational_neuroscience/10.3389/neuro.10/002.2008/abstract
We consider the evolution of a network of neurons, focusing on the asymptotic behavior of spikes dynamics instead of membrane potential dynamics. The spike response is not sought as a deterministic response in this context, but as a conditional proba bility : Reading out the code consists of inferring such a probability. This probability is computed from empirical raster plots, by using the framework of thermodynamic formalism in ergodic theory. This gives us a parametric statistical model where the probability has the form of a Gibbs distribution. In this respect, this approach generalizes the seminal and profound work of Schneidman and collaborators. A minimal presentation of the formalism is reviewed here, while a general algorithmic estimation method is proposed yielding fast convergent implementations. It is also made explicit how several spike observables (entropy, rate, synchronizations, correlations) are given in closed-form from the parametric estimation. This paradigm does not only allow us to estimate the spike statistics, given a design choice, but also to compare different models, thus answering comparative questions about the neural code such as : are correlations (or time synchrony or a given set of spike patterns, ..) significant with respect to rate coding only ? A numerical validation of the method is proposed and the perspectives regarding spike-train code analysis are also discussed.
402 - B. Cessac , T. Vieville 2008
We present a mathematical analysis of a networks with Integrate-and-Fire neurons and adaptive conductances. Taking into account the realistic fact that the spike time is only known within some textit{finite} precision, we propose a model where spikes are effective at times multiple of a characteristic time scale $delta$, where $delta$ can be textit{arbitrary} small (in particular, well beyond the numerical precision). We make a complete mathematical characterization of the model-dynamics and obtain the following results. The asymptotic dynamics is composed by finitely many stable periodic orbits, whose number and period can be arbitrary large and can diverge in a region of the synaptic weights space, traditionally called the edge of chaos, a notion mathematically well defined in the present paper. Furthermore, except at the edge of chaos, there is a one-to-one correspondence between the membrane potential trajectories and the raster plot. This shows that the neural code is entirely in the spikes in this case. As a key tool, we introduce an order parameter, easy to compute numerically, and closely related to a natural notion of entropy, providing a relevant characterization of the computational capabilities of the network. This allows us to compare the computational capabilities of leaky and Integrate-and-Fire models and conductance based models. The present study considers networks with constant input, and without time-dependent plasticity, but the framework has been designed for both extensions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا