ترغب بنشر مسار تعليمي؟ اضغط هنا

208 - T. Tsujimoto 2011
Growing evidence supports an unusual elemental feature appearing in nearby dwarf galaxies, especially dwarf spheroidals (dSphs), indicating a key process of galaxy evolution that is different from that of the Galaxy. In addition to the well-known def iciency of alpha-elements in dSphs, recent observations have clearly shown that s-process elements (Ba) are significantly enhanced relative to Fe, alpha-, and r-process elements. This enhancement occurs in some dSphs as well as in the Large Magellanic Cloud, but is unseen in the Galaxy. Here we report that this feature is evidence of the lack of very massive stars (> 25 solar mass) as predicted in the low star formation rate environment, and we conclude that the unique elemental feature of dwarf galaxies including a low-alpha/Fe ratio in some low-metallicity stars is, at least in some part, characterized by a different form of the initial mass function. We present a detailed model for the Fornax dSph galaxy and discuss its complex chemical enrichment history together with the nucleosynthesis site of the light s-process element Y.
134 - T. Tsujimoto , K. Bekki 2011
Recently revealed C, N, and O abundances in the most metal-poor damped Lyman-alpha (DLA) absorbers are compared with those of extremely metal-poor stars in the Galactic halo, as well as extragalactic H II regions, to decipher nucleosynthesis and chem ical enrichment in the early Universe. These comparisons surprisingly identify a relatively high C/O ratio and a low N/O ratio in DLA systems, which is hard to explain theoretically. We propose that if these features are confirmed by future studies, this effect occurs because the initial mass function in metal-poor DLA systems has a cut-off at the upper mass end at around 20-25 Msun, thus lacks the massive stars that provide the nucleosynthesis products leading to the low C/O and high N/O ratios. This finding is a reasonable explanation of the nature of DLA systems in which a sufficient amount of cold H I gas remains intact because of the suppression of ionization by massive stars. In addition, our claim strongly supports a high production rate of N in very massive stars, which might be acceptable in light of the recent nucleosynthesis calculations with fast rotation models. The updates of both abundance data and nucleosynthesis results will strengthen our novel proposition that the C/O and N/O abundances are a powerful tool for inferring the form of the initial mass function.
368 - T. Tsujimoto 2010
Chemical features of the local stellar disk have firmly established that long-term, continuous star formation has been accompanied by a steady rate of accretion of low-metallicity gas from the halo. We now argue that the recent discovery of an enhanc ed deuterium (D) fraction in the Galaxy is consistent with this picture. We consider two processes: the destruction of D in the interior of stars (astration) and the supply of nearly primordial D associated with the gas infall. Conventional Galactic chemical evolution models predict a monotonic decrease in D/H with time with a present-day D/H abundance which is much lower than the local value recently revealed. This predicted feature is the result of high levels of deuterium astration involved in the formation of the local metal-enhanced disk. Here we propose a new channel to explain the observed enhancement in D/H. Our model, which invokes ongoing gaseous infall and a star formation rate that declines over the past several Gyr, predicts that the D astration is suppressed over the same time interval.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا