ترغب بنشر مسار تعليمي؟ اضغط هنا

Determining fundamental properties of stars through stellar modeling has improved substantially due to recent advances in asteroseismology. Thanks to the unprecedented data quality obtained by space missions, particularly CoRoT and Kepler, invaluable information is extracted from the high-precision stellar oscillation frequencies, which provide very strong constraints on possible stellar models for a given set of classical observations. In this work, we have characterized two relatively faint stars, KIC10920273 and KIC11395018, using oscillation data from Kepler photometry and atmospheric constraints from ground-based spectroscopy. Both stars have very similar atmospheric properties; however, using the individual frequencies extracted from the Kepler data, we have determined quite distinct global properties, with increased precision compared to that of earlier results. We found that both stars have left the main sequence and characterized them as follows: KIC10920273 is a one-solar-mass star (M=1.00 +/- 0.04 M_sun), but much older than our Sun (t=7.12 +/- 0.47 Gyr), while KIC11395018 is significantly more massive than the Sun (M=1.27 +/- 0.04 M_sun) with an age close to that of the Sun (t=4.57 +/- 0.23 Gyr). We confirm that the high lithium abundance reported for these stars should not be considered to represent young ages, as we precisely determined them to be evolved subgiants. We discuss the use of surface lithium abundance, rotation and activity relations as potential age diagnostics.
Asteroseismology with the Kepler space telescope is providing not only an improved characterization of exoplanets and their host stars, but also a new window on stellar structure and evolution for the large sample of solar-type stars in the field. We perform a uniform analysis of 22 of the brightest asteroseismic targets with the highest signal-to-noise ratio observed for 1 month each during the first year of the mission, and we quantify the precision and relative accuracy of asteroseismic determinations of the stellar radius, mass, and age that are possible using various methods. We present the properties of each star in the sample derived from an automated analysis of the individual oscillation frequencies and other observational constraints using the Asteroseismic Modeling Portal (AMP), and we compare them to the results of model-grid-based methods that fit the global oscillation properties. We find that fitting the individual frequencies typically yields asteroseismic radii and masses to sim1% precision, and ages to sim2.5% precision (respectively 2, 5, and 8 times better than fitting the global oscillation properties). The absolute level of agreement between the results from different approaches is also encouraging, with model-grid-based methods yielding slightly smaller estimates of the radius and mass and slightly older values for the stellar age relative to AMP, which computes a large number of dedicated models for each star. The sample of targets for which this type of analysis is possible will grow as longer data sets are obtained during the remainder of the mission.
The evolved solar-type stars 16 Cyg A & B have long been studied as solar analogs, yielding a glimpse into the future of our own Sun. The orbital period of the binary system is too long to provide meaningful dynamical constraints on the stellar prope rties, but asteroseismology can help because the stars are among the brightest in the Kepler field. We present an analysis of three months of nearly uninterrupted photometry of 16 Cyg A & B from the Kepler space telescope. We extract a total of 46 and 41 oscillation frequencies for the two components respectively, including a clear detection of octupole (l=3) modes in both stars. We derive the properties of each star independently using the Asteroseismic Modeling Portal, fitting the individual oscillation frequencies and other observational constraints simultaneously. We evaluate the systematic uncertainties from an ensemble of results generated by a variety of stellar evolution codes and fitting methods. The optimal models derived by fitting each component individually yield a common age (t=6.8+/-0.4 Gyr) and initial composition (Z_i=0.024+/-0.002, Y_i=0.25+/-0.01) within the uncertainties, as expected for the components of a binary system, bolstering our confidence in the reliability of asteroseismic techniques. The longer data sets that will ultimately become available will allow future studies of differential rotation, convection zone depths, and long-term changes due to stellar activity cycles.
Although the Sun is our closest star by many orders of magnitude and despite having sunspot records stretching back to ancient China, our knowledge of the Suns magnetic field is far from complete. Indeed, even now, after decades of study, the most ob vious manifestations of magnetic fields in the Sun (e.g. sunspots, flares and the corona) are scarcely understood at all. These failures in spite of intense effort suggest that to improve our grasp of magnetic fields in stars and of astrophysical dynamos in general, we must broaden our base of examples beyond the Sun; we must study stars with a variety of ages, masses, rotation rates, and other properties, so we can test models against as broad a range of circumstances as possible. Over the next decade, an array of indirect techniques will be supplemented by rapidly maturing new capabilities such as gyrochronology, asteroseismology and precision photometry from space, which will transform our understanding of the temporal variability of stars and stellar systems. In this White Paper we will outline some of the key science questions in this area along with the techniques that could be used to bring new insights to these questions.
We present a new method that investigates the evolutionary history of the pulsating DB white dwarf GD358 using asteroseismology. This is done considering the internal C/O profile, which describes the relative abundances of carbon and oxygen from the core of the star to its surface. Different evolutionary channels lead to the generation of different C/O profiles, and these affect the pulsation periods. We used C/O profiles associated with white dwarfs that evolved through binary evolution channels where the progenitor experienced one or two episodes of mass loss during one or two common envelope (CE) phases, and two profiles from single star evolution. We computed models using these different profiles and used a genetic algorithm (GA) to optimize the search in the parameter space in order to find the best-fit to the observed pulsation periods. We used three-parameter models, adjusting the stellar mass, the effective temperature, and the helium mass of the external layer. Our results suggest that binary evolution profiles may provide a better match to the pulsation periods of GD 358. The best-fit to the observations is obtained using a profile related to an evolutionary history where two episodes of mass loss happen during two CE phases. The best-fit model has a mass close to the mean mass for DB white dwarfs found in various works, and a temperature consistent with UV spectra obtained with the IUE satellite.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا