ترغب بنشر مسار تعليمي؟ اضغط هنا

Polarized Raman, IR and time-domain THz spectroscopy of orthorhombic lead zirconate single crystals yielded a comprehensive picture of temperature-dependent quasiharmonic frequencies of its low-frequency phonon modes. It is argued that these modes pr imarily involve vibration of Pb and/or oxygen octahedra librations and their relation to particular phonon modes of the parent cubic phase is proposed. Counts of the observed IR and Raman active modes belonging to distinct irreducible representations agree quite well with group-theory predictions. The most remarkable finding is the considerably enhanced frequency renormalization of the y-polarized polar modes, resulting in a pronounced low temperature dielectric anisotropy. Results are discussed in terms of contemporary phenomenological theory of antiferroelectricity.
THz-range dielectric spectroscopy and first-principle-based effective-Hamiltonian molecular dynamics simulations were employed to elucidate the dielectric response in the paraelectric phase of (Ba,Sr)TiO3 solid solutions. Analysis of the resulting di electric spectra suggests the existence of a crossover between two different regimes: a higher-temperature regime governed by the soft mode only versus a lower-temperature regime exhibiting a coupled soft mode/central mode dynamics. Interestingly, a single phenomenological coupling model can be used to adjust the THz dielectric response in the entire range of the paraelectric phase (i.e., even at high temperature). We conclude that the central peak is associated with thermally activated processes, and that it cannot be discerned anymore in the dielectric spectra when the rate of these thermally activated processes exceeds certain characteristic frequency of the system.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا