ترغب بنشر مسار تعليمي؟ اضغط هنا

The Outer-Edge Veto (OEV) counter subsystem for extra-photon detection from the backgrounds for the? $K^0_Lrightarrowpi^0 ubar{ u}$ decay is located at the outer edge of the endcap CsI calorimeter of the KOTO experiment at J-PARC. The subsystem is co mposed of 44 counters with different cross-sectional shapes. All counters are made of lead and scintillator plates and read out through wavelength-shifting fibers. In this paper, we discuss the design and performances of the OEV counters under heavy load ($sim8$ tons/m$^2$) in vacuum. For 1-MeV energy deposit, the average light yield and time resolution are 20.9 photo-electrons and 1.5 ns, respectively. Although no pronounced peak by minimum-ionizing particles is observed in the energy distributions, an energy calibration method with cosmic rays works well in monitoring the gain stability with an accuracy of a few percent.
LiteBIRD is a next-generation satellite mission to measure the polarization of the cosmic microwave background (CMB) radiation. On large angular scales the B-mode polarization of the CMB carries the imprint of primordial gravitational waves, and its precise measurement would provide a powerful probe of the epoch of inflation. The goal of LiteBIRD is to achieve a measurement of the characterizing tensor to scalar ratio $r$ to an uncertainty of $delta r=0.001$. In order to achieve this goal we will employ a kilo-pixel superconducting detector array on a cryogenically cooled sub-Kelvin focal plane with an optical system at a temperature of 4~K. We are currently considering two detector array options; transition edge sensor (TES) bolometers and microwave kinetic inductance detectors (MKID). In this paper we give an overview of LiteBIRD and describe a TES-based polarimeter designed to achieve the target sensitivity of 2~$mu$K$cdot$arcmin over the frequency range 50 to 320~GHz.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا