ترغب بنشر مسار تعليمي؟ اضغط هنا

Almost 60 years ago Dicke introduced the term superradiance to describe a signature quantum effect: N atoms can collectively emit light at a rate proportional to N^2. Even for moderate N this represents a significant increase over the prediction of c lassical physics, and the effect has found applications ranging from probing exciton delocalisation in biological systems, to developing a new class of laser, and even in astrophysics. Structures that super-radiate must also have enhanced absorption, but the former always dominates in natural systems. Here we show that modern quantum control techniques can overcome this restriction. Our theory establishes that superabsorption can be achieved and sustained in certain simple nanostructures, by trapping the system in a highly excited state while extracting energy into a non-radiative channel. The effect offers the prospect of a new class of quantum nanotechnology, capable of absorbing light many times faster than is currently possible; potential applications of this effect include light harvesting and photon detection. An array of quantum dots or a porphyrin ring could provide an implementation to demonstrate this effect.
The compound semiconductor gallium arsenide (GaAs) provides an ultra-clean platform for storing and manipulating quantum information, encoded in the charge or spin states of electrons confined in nanostructures. The absence of inversion symmetry in t he zinc-blende crystal structure of GaAs however, results in strong piezoelectric coupling between lattice acoustic phonons and electrons, a potential hindrance for quantum computing architectures that can be charge-sensitive during certain operations. Here we examine phonon generation in a GaAs double dot, configured as a single- or two-electron charge qubit, and driven by the application of microwaves via surface gates. In a process that is a microwave analog of the Raman effect, stimulated phonon emission is shown to produce population inversion of a two-level system and provides spectroscopic signatures of the phononic environment created by the nanoscale device geometry.
Many proposals for quantum information processing are subject to detectable loss errors. In this paper, we give a detailed account of recent results in which we showed that topological quantum memories can simultaneously tolerate both loss errors and computational errors, with a graceful tradeoff between the threshold for each. We further discuss a number of subtleties that arise when implementing error correction on topological memories. We particularly focus on the role played by degeneracy in the matching algorithms, and present a systematic study its effects on thresholds. We also discuss some of the implications of degeneracy for estimating phase transition temperatures in the random bond Ising model.
Atomic ensembles, comprising clouds of atoms addressed by laser fields, provide an attractive system for both the storage of quantum information, and the coherent conversion of quantum information between atomic and optical degrees of freedom. In a l andmark paper, Duan et al. (DLCZ) [1] showed that atomic ensembles could be used as nodes of a quantum repeater network capable of sharing pairwise quantum entanglement between systems separated by arbitrarily large distances. In recent years, a number of promising experiments have demonstrated key aspects of this proposal [2-7]. Here, we describe a scheme for full scale quantum computing with atomic ensembles. Our scheme uses similar methods to those already demonstrated experimentally, and yet has information processing capabilities far beyond those of a quantum repeater.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا