ترغب بنشر مسار تعليمي؟ اضغط هنا

Charge carrier transport in single-layer graphene with one-dimensional charged defects is studied theoretically. Extended charged defects, considered an important factor for mobility degradation in chemically-vapor-deposited graphene, are described b y a self-consistent Thomas-Fermi potential. A numerical study of electronic transport is performed by means of a time-dependent real-space Kubo approach in honeycomb lattices containing millions of carbon atoms, capturing the linear response of realistic size systems in the highly disordered regime. Our numerical calculations are complemented with a kinetic transport theory describing charge transport in the weak scattering limit. The semiclassical transport lifetimes are obtained by computing scattered amplitudes within the second Born approximation. The transport electron-hole asymmetry found in the semiclassical approach is consistent with the Kubo calculations. In the strong scattering regime, the conductivity is found to be a sublinear function of electronic density and weakly dependent on the Thomas-Fermi screening wavelength. We attribute this atypical behavior to the extended nature of one-dimensional charged defects. Our results are consistent with recent experimental reports.
Exact numerical calculations of the conductivity of graphene sheets with random and correlated distributions of disorders have been performed using the time-dependent real-space Kubo formalism. The disorder was modeled by the long-range Gaussian pote ntial describing screened charged impurities and by the short-range potential describing neutral adatoms both in the weak and strong scattering regime. Our central result is that correlation in the spatial distribution for the strong short-range scatterers and for the long-range Gaussian potential do not lead to any enhancement of the conductivity in comparison to the uncorrelated case. Our results strongly indicate that the temperature enhancement of the conductivity reported in the recent study (Yan and Fuhrer, Phys. Rev. Lett. 107, 206601 (2011)) and attributed to the effect of dopant correlations was most likely caused by other factors not related to the correlations in the scattering potential.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا