ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a measurement of the angular bispectrum of the millimeter-wave sky in observing bands centered at roughly 95, 150, and 220 GHz, on angular scales of $1^prime lesssim theta lesssim 10^prime$ (multipole number $1000 lesssim l lesssim 10000$) . At these frequencies and angular scales, the main contributions to the bispectrum are expected to be the thermal Sunyaev-Zeldovich (tSZ) effect and emission from extragalactic sources, predominantly dusty, star-forming galaxies (DSFGs) and active galactic nuclei. We measure the bispectrum in 800 $mathrm{deg}^2$ of three-band South Pole Telescope data, and we use a multi-frequency fitting procedure to separate the bispectrum of the tSZ effect from the extragalactic source contribution. We simultaneously detect the bispectrum of the tSZ effect at $>$10$sigma$, the unclustered component of the extragalactic source bispectrum at $>$5$sigma$ in each frequency band, and the bispectrum due to the clustering of DSFGs---i.e., the clustered cosmic infrared background (CIB) bispectrum---at $>$5$sigma$. This is the first reported detection of the clustered CIB bispectrum. We use the measured tSZ bispectrum amplitude, compared to model predictions, to constrain the normalization of the matter power spectrum to be $sigma_8 = 0.787 pm 0.031$ and to predict the amplitude of the tSZ power spectrum at $l = 3000$. This prediction improves our ability to separate the thermal and kinematic contributions to the total SZ power spectrum. The addition of bispectrum data improves our constraint on the tSZ power spectrum amplitude by a factor of two compared to power spectrum measurements alone and demonstrates a preference for a nonzero kinematic SZ (kSZ) power spectrum, with a derived constraint on the kSZ amplitude at $l=3000$ of A_kSZ $ = 2.9 pm 1.6 mu$K$^2$, or A_kSZ $ = 2.6 pm 1.8 mu$K$^2$ if the default A_kSZ > 0 prior is removed.
We present a detection-significance-limited catalog of 21 Sunyaev-Zeldovich selected galaxy clusters. These clusters, along with 1 unconfirmed candidate, were identified in 178 deg^2 of sky surveyed in 2008 by the South Pole Telescope to a depth of 1 8 uK-arcmin at 150 GHz. Optical imaging from the Blanco Cosmology Survey (BCS) and Magellan telescopes provided photometric (and in some cases spectroscopic) redshift estimates, with catalog redshifts ranging from z=0.15 to z>1, with a median z = 0.74. Of the 21 confirmed galaxy clusters, three were previously identified as Abell clusters, three were presented as SPT discoveries in Staniszewski et al, 2009, and three were first identified in a recent analysis of BCS data by Menanteau et al, 2010; the remaining 12 clusters are presented for the first time in this work. Simulated observations of the SPT fields predict the sample to be nearly 100% complete above a mass threshold of M_200 ~ 5x10^14 M_sun/h at z = 0.6. This completeness threshold pushes to lower mass with increasing redshift, dropping to ~4x10^14 M_sun/h at z=1. The size and redshift distribution of this catalog are in good agreement with expectations based on our current understanding of galaxy clusters and cosmology. In combination with other cosmological probes, we use the cluster catalog to improve estimates of cosmological parameters. Assuming a standard spatially flat wCDM cosmological model, the addition of our catalog to the WMAP 7-year analysis yields sigma_8 = 0.81 +- 0.09 and w = -1.07 +- 0.29, a ~50% improvement in precision on both parameters over WMAP7 alone.
We report the results of an 87 square-degree point-source survey centered at R.A. 5h30m, decl. -55 deg. taken with the South Pole Telescope (SPT) at 1.4 and 2.0 mm wavelengths with arc-minute resolution and milli-Jansky depth. Based on the ratio of f lux in the two bands, we separate the detected sources into two populations, one consistent with synchrotron emission from active galactic nuclei (AGN) and one consistent with thermal emission from dust. We present source counts for each population from 11 to 640 mJy at 1.4 mm and from 4.4 to 800 mJy at 2.0 mm. The 2.0 mm counts are dominated by synchrotron-dominated sources across our reported flux range; the 1.4 mm counts are dominated by synchroton-dominated sources above ~15 mJy and by dust-dominated sources below that flux level. We detect 141 synchrotron-dominated sources and 47 dust-dominated sources at S/N > 4.5 in at least one band. All of the most significantly detected members of the synchrotron-dominated population are associated with sources in previously published radio catalogs. Some of the dust-dominated sources are associated with nearby (z << 1) galaxies whose dust emission is also detected by the Infrared Astronomy Satellite (IRAS). However, most of the bright, dust-dominated sources have no counterparts in any existing catalogs. We argue that these sources represent the rarest and brightest members of the population commonly referred to as sub-millimeter galaxies (SMGs). Because these sources are selected at longer wavelengths than in typical SMG surveys, they are expected to have a higher mean redshift distribution and may provide a new window on galaxy formation in the early universe.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا