ترغب بنشر مسار تعليمي؟ اضغط هنا

The fraction of star-forming to quiescent dwarf galaxies varies from almost infinity in the field to zero in the centers of rich galaxy clusters. What is causing this pronounced morphology-density relation? What do quiescent dwarf galaxies look like when studied in detail, and what conclusions can be drawn about their formation mechanism? Here we study a nearly magnitude-complete sample (-19 < M_r < -16 mag) of 121 Virgo cluster early types with deep near-infrared images from the SMAKCED project. We fit two-dimensional models with optional inner and outer components, as well as bar and lens components (in ~15% of the galaxies), to the galaxy images. While a single Sersic function may approximate the overall galaxy structure, it does not entirely capture the light distribution of two-thirds of our galaxies, for which multi-component models provide a better fit. This fraction of complex galaxies shows a strong dependence on luminosity, being larger for brighter objects. We analyze the global and component-specific photometric scaling relations of early-type dwarf galaxies and discuss similarities with bright early and late types. The dwarfs global galaxy parameters show scaling relations that are similar to those of bright disk galaxies. The inner components are mostly fitted with Sersic n values close to 1. At a given magnitude they are systematically larger than the bulges of spirals, suggesting that they are not ordinary bulges. We argue that the multi-component structures in early-type dwarfs are mostly a phenomenon inherent to the disks, and may indeed stem from environmental processing.
Early-type dwarf galaxies, once believed to be simple systems, have recently been shown to exhibit an intriguing diversity in structure and stellar content. To analyze this further, we started the SMAKCED project, and obtained deep H-band images for 101 early-type dwarf galaxies in the Virgo cluster in a brightness range of -19 leq M_r leq -16 mag, typically reaching a signal-to-noise of 1 per pixel of sim0.25 at surface brightnesses sim22.5 mag/arcsec^2 in the H-band. Here we present the first results of decomposing their two-dimensional light distributions. This is the first study dedicated to early-type dwarf galaxies using the two-dimensional multi-component decomposition approach, which has been proven to be important for giant galaxies. Armed with this new technique, we find more structural components than previous studies: only a quarter of the galaxies fall into the simplest group, namely those represented by a single Sersic function, optionally with a nucleus. Furthermore, we find a bar fraction of 18%. We detect also a similar fraction of lenses which appear as shallow structures with sharp outer edges. Galaxies with bars and lenses are found to be more concentrated towards the Virgo galaxy center than the other sample galaxies.
[Abridged] Using VLT/FORS2 spectroscopy, we have studied the properties of the central stellar populations of a sample of 38 nucleated early-type dwarf (dE) galaxies in the Virgo Cluster. We find that these galaxies do not exhibit the same average st ellar population characteristics for different morphological subclasses. The nucleated galaxies without discs are older and more metal poor than the dEs with discs . The alpha-element abundance ratio appears consistent with the solar value for both morphological types. Besides a well-defined relation of metallicity and luminosity, we also find a clear anti-correlation between age and luminosity. More specifically, there appears to be a bimodality: brighter galaxies, including the discy ones, exhibit significantly younger ages than fainter dEs. Therefore, it appears less likely that fainter and brighter dEs have experienced the same evolutionary history, as the well-established trend of decreasing average stellar age when going from the most luminous ellipticals towards low-luminosity Es and bright dEs is broken here. The older and more metal-poor dEs could have had an early termination of star formation activity, possibly being primordial galaxies in the sense that they have formed along with the protocluster or experienced very early infall. By contrast, the younger and relatively metal-rich brighter dEs, most of which have discs, might have undergone structural transformation of infalling disc galaxies.
81 - T. Lisker 2009
In the light of the question whether most early-type dwarf (dE) galaxies in clusters formed through infall and transformation of late-type progenitors, we search for an imprint of such an infall history in the oldest, most centrally concentrated dE s ubclass of the Virgo cluster: the nucleated dEs that show no signatures of disks or central residual star formation. We select dEs in a (projected) region around the central elliptical galaxies, and subdivide them by their line-of-sight velocity into fast-moving and slow-moving ones. These subsamples turn out to have significantly different shapes: while the fast dEs are relatively flat objects, the slow dEs are nearly round. Likewise, when subdividing the central dEs by their projected axial ratio into flat and round ones, their distributions of line-of-sight velocities differ significantly: the flat dEs have a broad, possibly two-peaked distribution, whereas the round dEs show a narrow single peak. We conclude that the round dEs probably are on circularized orbits, while the flat dEs are still on more eccentric or radial orbits typical for an infalling population. In this picture, the round dEs would have resided in the cluster already for a long time, or would even be a cluster-born species, explaining their nearly circular orbits. They would thus be the first generation of Virgo cluster dEs. Their shape could be caused by dynamical heating through repeated tidal interactions. Further investigations through stellar population measurements and studies of simulated galaxy clusters would be desirable to obtain definite conclusions on their origin.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا