ترغب بنشر مسار تعليمي؟ اضغط هنا

Bright points (BPs) in the solar photosphere are radiative signatures of magnetic elements described by slender flux tubes located in the darker intergranular lanes. They contribute to the ultraviolet (UV) flux variations over the solar cycle and hen ce may influence the Earths climate. Here we combine high-resolution UV and spectro-polarimetric observations of BPs by the SUNRISE observatory with 3D radiation MHD simulations. Full spectral line syntheses are performed with the MHD data and a careful degradation is applied to take into account all relevant instrumental effects of the observations. It is demonstrated that the MHD simulations reproduce the measured distributions of intensity at multiple wavelengths, line-of-sight velocity, spectral line width, and polarization degree rather well. Furthermore, the properties of observed BPs are compared with synthetic ones. These match also relatively well, except that the observations display a tail of large and strongly polarized BPs not found in the simulations. The higher spatial resolution of the simulations has a significant effect, leading to smaller and more numerous BPs. The observation that most BPs are weakly polarized is explained mainly by the spatial degradation, the stray light contamination, and the temperature sensitivity of the Fe I line at 5250.2 AA{}. The Stokes $V$ asymmetries of the BPs increase with the distance to their center in both observations and simulations, consistent with the classical picture of a production of the asymmetry in the canopy. This is the first time that this has been found also in the internetwork. Almost vertical kilo-Gauss fields are found for 98 % of the synthetic BPs. At the continuum formation height, the simulated BPs are on average 190 K hotter than the mean quiet Sun, their mean BP field strength is 1750 G, supporting the flux-tube paradigm to describe BPs.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا