ترغب بنشر مسار تعليمي؟ اضغط هنا

We suggest a scenario where the three light quark flavors are sequentially deconfined under increasing pressure in cold asymmetric nuclear matter as found, e.g., in neutron stars. The basis for our analysis is a chiral quark matter model of Nambu--Jo na-Lasinio (NJL) type with diquark pairing in the spin-1 single flavor (CSL), spin-0 two flavor (2SC) and three flavor (CFL) channels. We find that nucleon dissociation sets in at about the saturation density, n_0, when the down-quark Fermi sea is populated (d-quark dripline) due to the flavor asymmetry induced by beta-equilibrium and charge neutrality. At about 3n_0 u-quarks appear and a two-flavor color superconducting (2SC) phase is formed. The s-quark Fermi sea is populated only at still higher baryon density, when the quark chemical potential is of the order of the dynamically generated strange quark mass. We construct two different hybrid equations of state (EoS) using the Dirac-Brueckner Hartree-Fock (DBHF) approach and the EoS by Shen et al. in the nuclear matter sector. The corresponding hybrid star sequences have maximum masses of, respectively, 2.1 and 2.0 M_sun. Two- and three-flavor quark-matter phases exist only in gravitationally unstable hybrid star solutions in the DBHF case, while the Shen-based EoS produce stable configurations with a 2SC phase-component in the core of massive stars. Nucleon dissociation via d-quark drip could act as a deep crustal heating process, which apparently is required to explain superbusts and cooling of X-ray transients.
Recent indications for high neutron star masses (M sim 2 M_sun) and large radii (R > 12 km) could rule out soft equations of state and have provoked a debate whether the occurence of quark matter in compact stars can be excluded as well. We show that modern quantum field theoretical approaches to quark matter including color superconductivity and a vector meanfield allow a microscopic description of hybrid stars which fulfill the new, strong constraints. For these objects color superconductivity turns out to be an essential ingredient for a successful description of the cooling phenomenology in accordance with recently developed tests. We discuss the energy release in the neutrino untrapping transition as a new aspect of the problem that hybrid stars masquerade themselves as neutron stars. Quark matter searches in future generations of low-temperature/high-density nucleus-nucleus collision experiments such as low-energy RHIC and CBM @ FAIR might face the same problem of an almost crossover behavior of the deconfinement transition. Therefore, diagnostic tools shall be derived from effects of color superconductivity.
Recently, observations of compact stars have provided new data of high accuracy which put strong constraints on the high-density behaviour of the equation of state of strongly interacting matter otherwise not accessible in terrestrial laboratories. T he evidence for neutron stars with high mass (M =2.1 +/- 0.2 M_sun for PSR J0751+1807) and large radii (R > 12 km for RX J1856-3754) rules out soft equations of state and has provoked a debate whether the occurence of quark matter in compact stars can be excluded as well. In this contribution it is shown that modern quantum field theoretical approaches to quark matter including color superconductivity and a vector meanfield allow a microscopic description of hybrid stars which fulfill the new, strong constraints. The deconfinement transition in the resulting stiff hybrid equation of state is weakly first order so that signals of it have to be expected due to specific changes in transport properties governing the rotational and cooling evolution caused by the color superconductivity of quark matter. A similar conclusion holds for the investigation of quark deconfinement in future generations of nucleus-nucleus collision experiments at low temperatures and high baryon densities such as CBM @ FAIR.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا