ترغب بنشر مسار تعليمي؟ اضغط هنا

A community meeting on the topic of Radio Astronomy in the LSST Era was hosted by the National Radio Astronomy Observatory in Charlottesville, VA (2013 May 6--8). The focus of the workshop was on time domain radio astronomy and sky surveys. For the t ime domain, the extent to which radio and visible wavelength observations are required to understand several classes of transients was stressed, but there are also classes of radio transients for which no visible wavelength counterpart is yet known, providing an opportunity for discovery. From the LSST perspective, the LSST is expected to generate as many as 1 million alerts nightly, which will require even more selective specification and identification of the classes and characteristics of transients that can warrant follow up, at radio or any wavelength. The LSST will also conduct a deep survey of the sky, producing a catalog expected to contain over 38 billion objects in it. Deep radio wavelength sky surveys will also be conducted on a comparable time scale, and radio and visible wavelength observations are part of the multi-wavelength approach needed to classify and understand these objects. Radio wavelengths are valuable because they are unaffected by dust obscuration and, for galaxies, contain contributions both from star formation and from active galactic nuclei. The workshop touched on several other topics, on which there was consensus including the placement of other LSST Deep Drilling Fields, inter-operability of software tools, and the challenge of filtering and exploiting the LSST data stream. There were also topics for which there was insufficient time for full discussion or for which no consensus was reached, which included the procedures for following up on LSST observations and the nature for future support of researchers desiring to use LSST data products.
This paper considers the suitability of a number of emerging and future instruments for the study of radio recombination lines (RRLs) at frequencies below 200 MHz. These lines arise only in low-density regions of the ionized interstellar medium, and they may represent a frequency-dependent foreground for next-generation experiments trying to detect H I signals from the Epoch of Reionization and Dark Ages (21-cm cosmology). We summarize existing decametre-wavelength observations of RRLs, which have detected only carbon RRLs. We then show that, for an interferometric array, the primary instrumental factor limiting detection and study of the RRLs is the areal filling factor of the array. We consider the Long Wavelength Array (LWA-1), the LOw Frequency ARray (LOFAR), the low-frequency component of the Square Kilometre Array (SKA-lo), and a future Lunar Radio Array (LRA), all of which will operate at decametre wavelengths. These arrays offer digital signal processing, which should produce more stable and better defined spectral bandpasses; larger frequency tuning ranges; and better angular resolution than that of the previous generation of instruments that have been used in the past for RRL observations. Detecting Galactic carbon RRLs, with optical depths at the level of 10^-3, appears feasible for all of these arrays, with integration times of no more than 100 hr. The SKA-lo and LRA, and the LWA-1 and LOFAR at the lowest frequencies, should have a high enough filling factor to detect lines with much lower optical depths, of order 10^-4 in a few hundred hours. The amount of RRL-hosting gas present in the Galaxy at the high Galactic latitudes likely to be targeted in 21-cm cosmology studies is currently unknown. If present, however, the spectral fluctuations from RRLs could be comparable to or exceed the anticipated H I signals.
This paper reports a blind search for magnetospheric emissions from planets around nearby stars. Young stars are likely to have much stronger stellar winds than the Sun, and because planetary magnetospheric emissions are powered by stellar winds, str onger stellar winds may enhance the radio luminosity of any orbiting planets. Using various stellar catalogs, we selected nearby stars (<~ 30 pc) with relatively young age estimates (< 3 Gyr). We constructed different samples from the stellar catalogs, finding between 100 and several hundred stars. We stacked images from the 74-MHz (4-m wavelength) VLA Low-frequency Sky Survey (VLSS), obtaining 3sigma limits on planetary emission in the stacked images of between 10 and 33 mJy. These flux density limits correspond to average planetary luminosities less than 5--10 x 10^{23} erg/s. Using recent models for the scaling of stellar wind velocity, density, and magnetic field with stellar age, we estimate scaling factors for the strength of stellar winds, relative to the Sun, in our samples. The typical kinetic energy carried by the stellar winds in our samples is 15--50 times larger than that of the Sun, and the typical magnetic energy is 5--10 times larger. If we assume that every star is orbited by a Jupiter-like planet with a luminosity larger than that of the Jovian decametric radiation by the above factors, our limits on planetary luminosities from the stacking analysis are likely to be a factor of 10--100 above what would be required to detect the planets in a statistical sense. Similar statistical analyses with observations by future instruments, such as the Low Frequency Array (LOFAR) and the Long Wavelength Array (LWA), offer the promise of improvements by factors of 10--100.
This paper reports dual-epoch, Very Long Baseline Array observations of H I absorption toward 3C 147. One of these epochs (2005) represents new observations while one (1998) represents the reprocessing of previous observations to obtain higher signal -to-noise results. Significant H I opacity and column density variations, both spatially and temporally, are observed with typical variations at the level of Deltatau ~ 0.20 and in some cases as large as Deltatau ~ 0.70, corresponding to column density fluctuations of order 5 x 10^{19} cm^{-2} for an assumed 50 K spin temperature. The typical angular scale is 15 mas; while the distance to the absorbing gas is highly uncertain, the equivalent linear scale is likely to be about 10 AU. Approximately 10% of the face of the source is covered by these opacity variations, probably implying a volume filling factor for the small-scale absorbing gas of no more than about 1%. Comparing our results with earlier results toward 3C 138 (Brogan et al.), we find numerous similarities, and we conclude that small-scale absorbing gas is a ubiquitous phenomenon, albeit with a low probability of intercept on any given line of sight. Further, we compare the volumes sampled by the line of sight through the Galaxy between our two epochs and conclude that, on the basis of the motion of the Sun alone, these two volumes are likely to be substantially different. In order to place more significant constraints on the various models for the origin of these small-scale structures, more frequent sampling is required in any future observations.
We report the detection of a new transient radio source, GCRT J1742-3001, located ~1 degree from the Galactic center. The source was detected ten times from late 2006 to 2007 May in our 235 MHz transient monitoring program with the Giant Metrewave Ra dio Telescope (GMRT). The radio emission brightened in about one month, reaching a peak observed flux density of ~100 mJy on 2007 January 28, and decaying to ~50 mJy by 2007 May when our last monitoring observation was made. Two additional faint, isolated 235 MHz detections were made in mid-2006, also with the GMRT. GCRT J1742-3001 is unresolved at each epoch, with typical resolutions of ~20 arcsec x 10 arcsec. No polarization information is available from the observations. Based on nondetections in observations obtained simultaneously at 610 MHz, we deduce that the spectrum of GCRT J1742-3001 is very steep, with a spectral index less than about -2. Follow-up radio observations in 2007 September at 330 MHz and 1.4 GHz, and in 2008 February at 235 MHz yielded no detections. No X-ray counterpart is detected in a serendipitous observation obtained with the X-ray telescope aboard the Swift satellite during the peak of the radio emission in early 2007. We consider the possibilities that GCRT J1742-3001 is either a new member of an existing class of radio transients, or is representative of a new class having no associated X-ray emission.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا