ترغب بنشر مسار تعليمي؟ اضغط هنا

We report on precision resonance spectroscopy measurements of quantum states of ultracold neutrons confined above the surface of a horizontal mirror by the gravity potential of the Earth. Resonant transitions between several of the lowest quantum sta tes are observed for the first time. These measurements demonstrate, that Newtons inverse square law of Gravity is understood at micron distances on an energy scale of~$10^{-14}$~eV. At this level of precision we are able to provide constraints on any possible gravity-like interaction. In particular, a dark energy chameleon field is excluded for values of the coupling constant~$beta > 5.8times10^8$ at~95% confidence level~(C.L.), and an attractive (repulsive) dark matter axion-like spin-mass coupling is excluded for the coupling strength $g_sg_p > 3.7times10^{-16}$~($5.3times10^{-16}$)~at a Yukawa length of~$lambda = 20$~{textmu}m~(95% (C.L.).
We perform classical three-dimensional Monte Carlo simulations of ultracold neutrons scattering through an absorbing-reflecting mirror system in the Earths gravitational field. We show that the underlying mixed phase space of regular skipping motion and random motion due to disorder scattering can be exploited to realize a vectorial velocity filter for ultracold neutrons. The absorbing-reflecting mirror system proposed allows beams of ultracold neutrons with low angular divergence to be formed. The range of velocity components can be controlled by adjusting the geometric parameters of the system. First experimental tests of its performance are presented. One potential future application is the investigation of transport and scattering dynamics in confined systems downstream of the filter.
The evidence for the observation of the Higgs spin-0-boson as a manifestation of a scalar field provides the missing corner stone for the standard model of particles (SM). However, the SM fails to explain the non-visible but gravitationally active pa rt of the universe. Its nature is unknown but the confirmation of a scalar Higgs is giving a boost to scalar-field-theories. So far gravity experiments and observations performed at different distances find no deviation from Newtons gravity law. Therefore dark energy must possess a screening mechanism which suppresses the scalar-mediated fifth force. Our line of attack is a novel gravity experiment with neutrons based on a quantum interference technique. The spectroscopic measurement of quantum states on resonances with an external coupling makes this a powerful search for dark matter and dark energy contributions in the universe. Quantum states in the gravity potential are intimately related to other scalar field or spin-0-bosons if they exist. If the reason is that some undiscovered particle interact with a neutron, this results in a measurable energy shift of quantum states in the gravity potential, because for neutrons the screening effect is absent. We use Gravity Resonance Spectroscopy to measure the energy splitting at the highest level of precision, providing a constraint on any possible new interaction. We obtain a sensitivity of 10^-14 eV. We set an experimental limit on any fifth force, in particular on parameter beta<2x10^9 at n=3 for the scalar chameleon field, which is improved by a factor of 100 compared to our previous experiment and five orders of magnitude better than from precision tests of atomic spectra. The pseudoscalar axion coupling is constrained to gsgp/hbar c<3x10^-16 at 20mu m, which is an improvement by a factor of 30. These results indicate that gravity is understood at this improved level of precision.
68 - H. Abele , T. Jenke , H. Leeb 2009
We propose to apply Ramseys method of separated oscillating fields to the spectroscopy of the quantum states in the gravity potential above a vertical mirror. This method allows a precise measurement of quantum mechanical phaseshifts of a Schrodinger wave packet bouncing off a hard surface in the gravitational field of the earth. Measurements with ultra-cold neutrons will offer a sensitivity to Newtons law or hypothetical short-ranged interactions, which is about 21 orders of magnitude below the energy scale of electromagnetism.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا