ترغب بنشر مسار تعليمي؟ اضغط هنا

We present 325 MHz (90 cm wavelength) radio observations of ultracool dwarfs TVLM 513-46546 and 2MASS J0036+1821104 using the Very Large Array (VLA) in June 2007. Ultracool dwarfs are expected to be undetectable at radio frequencies, yet observations at 8.5 GHz (3.5 cm) and 4.9 GHz (6 cm) of have revealed sources with > 100 {mu}Jy quiescent radio flux and > 1 mJy pulses coincident with stellar rotation. The anomalous emission is likely a combination of gyrosynchrotron and cyclotron maser processes in a long-duration, large-scale magnetic field. Since the characteristic frequency for each process scales directly with the magnetic field magnitude, emission at lower frequencies may be detectable from regions with weaker field strength. We detect no significant radio emission at 325 MHz from TVLM 513-46546 or 2MASS J0036+1821104 over multiple stellar rotations, establishing 2.5{sigma} total flux limits of 795 {mu}Jy and 942 {mu}Jy respectively. Analysis of an archival VLA 1.4 GHz observation of 2MASS J0036+1821104 from January 2005 also yields a non-detection at the level of < 130 {mu}Jy . The combined radio observation history (0.3 GHz to 8.5 GHz) for these sources suggests a continuum emission spectrum for ultracool dwarfs which is either flat or inverted below 2-3 GHz. Further, if the cyclotron maser instability is responsible for the pulsed radio emission observed on some ultracool dwarfs, our low-frequency non-detections suggest that the active region responsible for the high-frequency bursts is confined within 2 stellar radii and driven by electron beams with energies less than 5 keV.
By volume, more than 99% of the solar system has not been imaged at radio frequencies. Almost all of this space (the solar wind) can be traversed by fast electrons producing radio emissions at frequencies lower than the terrestrial ionospheric cutoff , which prevents observation from the ground. To date, radio astronomy-capable space missions consist of one or a few satellites, typically far from each other, which measure total power from the radio sources, but cannot produce images with useful angular resolution. To produce such images, we require arrays of antennas distributed over many wavelengths (hundreds of meters to kilometers) to permit aperture synthesis imaging. Such arrays could be free-flying arrays of microsatellites or antennas laid out on the lunar surface. In this white paper, we present the lunar option. If such an array were in place by 2020, it would provide context for observations during Solar Probe Plus perihelion passes. Studies of the lunar ionospheres density and time variability are also important goals. This white paper applies to the Solar and Heliospheric Physics study panel.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا