ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate Dirac fermions on the surface of the topological insulator Bi2Se3 using scanning tunneling spectroscopy. Landau levels (LLs) are observed in the tunneling spectra in a magnetic field. In contrast to LLs of conventional electrons, a fie ld independent LL appears at the Dirac point, which is a hallmark of Dirac fermions. A scaling analysis of LLs based on the Bohr-Sommerfeld quantization condition allowed us to determine the dispersion of the surface band. Near the Fermi energy, fine peaks mixed with LLs appear in the spectra, which may be responsible for the anomalous magneto-fingerprint effect [J. G. Checkelsky et al., Phys. Rev. Lett. 103, 246601 (2009)].
High-transition-temperature (high-Tc) superconductivity is ubiquitous in the cuprates containing CuO2 planes but each cuprate has its own character. The study of the material dependence of the d-wave superconducting gap (SG) should provide important insights into the mechanism of high-Tc. However, because of the pseudogap phenomenon, it is often unclear whether the energy gaps observed by spectroscopic techniques really represent the SG. Here, we report spectroscopic imaging scanning tunneling microscopy (SI-STM) studies of nearly-optimally-doped Ca2-xNaxCuO2Cl2 (Na-CCOC) with Tc = 25 ~ 28 K. They enable us to observe the quasi-particle interference (QPI) effect in this material, through which unambiguous new information on the SG is obtained. The analysis of QPI in Na-CCOC reveals that the SG dispersion near the gap node is almost identical to that of Bi2Sr2CaCu2Oy (Bi2212) at the same doping level, while Tc of Bi2212 is 3 times higher than that of Na-CCOC. We also find that SG in Na-CCOC is confined in narrower energy and momentum ranges than Bi2212. This explains at least in part the remarkable material dependence of Tc
76 - K. Iwaya , S. Satow , T. Hanaguri 2007
The local spectroscopic signatures of metamagnetic criticality in Sr3Ru2O7 were explored using scanning tunneling microscopy (STM). Singular features in the tunneling spectrum were found close to the Fermi level, as would be expected in a Stoner pict ure of itinerant electron metamagnetism. These features showed a pronounced magnetic field dependence across the metamagnetic critical point, which cannot be understood in terms of a naive Stoner theory. In addition, a pseudo-gap structure was observed over several tens of meV, accompanied by a c(2x2) superstructure in STM images. This result represents a new electronic ordering at the surface in the absence of any measurable surface reconstruction.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا