ترغب بنشر مسار تعليمي؟ اضغط هنا

137 - T. Binoth , T. Gleisberg , S. Karg 2009
A fully differential calculation of the next-to-leading order QCD corrections to the production of Z-boson pairs in association with a hard jet at the Tevatron and LHC is presented. This process is an important background for Higgs particle and new p hysics searches at hadron colliders. We find sizable corrections for cross sections and differential distributions, particularly at the LHC. Residual scale uncertainties are typically at the 10% level and can be further reduced by applying a veto against the emission of a second hard jet. Our results confirm that NLO corrections do not simply rescale LO predictions.
In this paper the current release of the Monte Carlo event generator Sherpa, version 1.1, is presented. Sherpa is a general-purpose tool for the simulation of particle collisions at high-energy colliders. It contains a very flexible tree-level matrix -element generator for the calculation of hard scattering processes within the Standard Model and various new physics models. The emission of additional QCD partons off the initial and final states is described through a parton-shower model. To consistently combine multi-parton matrix elements with the QCD parton cascades the approach of Catani, Krauss, Kuhn and Webber is employed. A simple model of multiple interactions is used to account for underlying events in hadron--hadron collisions. The fragmentation of partons into primary hadrons is described using a phenomenological cluster-hadronisation model. A comprehensive library for simulating tau-lepton and hadron decays is provided. Where available form-factor models and matrix elements are used, allowing for the inclusion of spin correlations; effects of virtual and real QED corrections are included using the approach of Yennie, Frautschi and Suura.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا