ترغب بنشر مسار تعليمي؟ اضغط هنا

74 - T. E. Clarke 2014
New observations of Jupiters decametric radio emissions have been made with the Long Wavelength Array Station 1 (LWA1) which is capable of making high quality observations as low as 11 MHz. Full Stokes parameters were determined for bandwidths of 16 MHz. Here we present the first LWA1 results for the study of six Io-related events at temporal resolutions as fine as 0.25 ms. LWA1 data show excellent spectral detail in Jovian DAM such as simultaneous left hand circular (LHC) and right hand circular (RHC) polarized Io-related arcs and source envelopes, modulation lane features, S-bursts structures, narrow band N-events, and interactions between S-bursts and N-events. The sensitivity of the LWA1 combined with the low radio frequency interference environment allow us to trace the start of the LHC Io-C source region to much earlier CMLIII than typically found in the literature. We find the Io-C starts as early as CMLIII = 230 degrees at frequencies near 11 MHz. This early start of the Io-C emission may be valuable for refining models of the emission mechanism. We also detect modulation lane structures that appear continuous across LHC and RHC emissions, suggesting that both polarizations may originate from the same hemisphere of Jupiter. We present a study of rare S-bursts detected during an Io-D event and show drift rates are consistent with those from other Io-related sources. Finally, S-N burst events are seen in high spectral and temporal resolution and our data strongly support the co-spatial origins of these events.
We present a new Chandra X-ray observation of the intracluster medium in the galaxy cluster Abell 2443, hosting an ultra-steep spectrum radio source. The data reveal that the intracluster medium is highly disturbed. The thermal gas in the core is elo ngated along a northwest to southeast axis and there is a cool tail to the north. We also detect two X-ray surface brightness edges near the cluster core. The edges appear to be consistent with an inner cold front to the northeast of the core and an outer shock front to the southeast of the core. The southeastern edge is coincident with the location of the radio relic as expected for shock (re)acceleration or adiabatic compression of fossil relativistic electrons.
76 - E. L. Blanton 2011
We present first results from a very deep (~650 ksec) Chandra X-ray observation of Abell 2052, as well as archival VLA radio observations. The data reveal detailed structure in the inner parts of the cluster, including bubbles evacuated by the AGNs r adio lobes, compressed bubble rims, filaments, and loops. Two concentric shocks are seen, and a temperature rise is measured for the innermost one. On larger scales, we report the first detection of an excess surface brightness spiral feature. The spiral has cooler temperatures, lower entropies, and higher abundances than its surroundings, and is likely the result of sloshing gas initiated by a previous cluster-cluster or sub-cluster merger. Initial evidence for previously unseen bubbles at larger radii related to earlier outbursts from the AGN is presented.
Observations made during the last ten years with the Chandra X-ray Observatory have shed much light on the cooling gas in the centers of clusters of galaxies and the role of active galactic nucleus (AGN) heating. Cooling of the hot intracluster mediu m in cluster centers can feed the supermassive black holes found in the nuclei of the dominant cluster galaxies leading to AGN outbursts which can reheat the gas, suppressing cooling and large amounts of star formation. AGN heating can come in the form of shocks, buoyantly rising bubbles that have been inflated by radio lobes, and the dissipation of sound waves.
389 - T. E. Clarke 2009
We present new radio and X-ray observations of Abell 262. The X-ray residual image provides the first evidence of an X-ray tunnel in this system while the radio data reveal that the central radio source is more than three times larger than previously known. We find that the well-known cluster-center S-shaped radio source B2 0149+35 is surrounded by extended emission to the east and south-west. The south-western extension is co-spatial with the X-ray tunnel seen in our new Chandra images while the eastern extension shows three clumps of emission with the innermost coincident with a faint X-ray cavity. The outer two eastern radio extensions are coincident with a newly detected X-ray depression. We use the projected separation of the emission regions to estimate a lower limit of tau_rep=28 Myr to the outburst repetition timescale of the central AGN. The total energy input into the cluster over multiple outburst episodes is estimated to be 2.2x 10^{58} ergs, more than an order of magnitude larger than previously thought. The total AGN energy output determined from our new observations shows that the source should be capable of offsetting radiative cooling over several outburst episodes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا