ترغب بنشر مسار تعليمي؟ اضغط هنا

It is known that some well-established parametrizations of the EDF do not always provide converged results for nuclei and a qualitative link between this finding and the appearance of finite-size instabilities of SNM near saturation density when comp uted within the RPA has been pointed out. We seek for a quantitative and systematic connection between the impossibility to converge self-consistent calculations of nuclei and the occurrence of finite-size instabilities in SNM for the example of scalar-isovector (S=0, T=1) instabilities of the standard Skyrme EDF. We aim to establish a stability criterion based on computationally-friendly RPA calculations of SNM that is independent on the functional form of the EDF and that can be utilized during the adjustment of its coupling constants. Tuning the coupling constant $C^{rho Deltarho}_{1}$ of the gradient term that triggers scalar-isovector instabilities of the standard Skyrme EDF, we find that the occurrence of instabilities in finite nuclei depends strongly on the numerical scheme used to solve the self-consistent mean-field equations. The link to instabilities of SNM is made by extracting the lowest density $rho_{text{crit}}$ at which a pole appears at zero energy in the RPA response function when employing the critical value of the coupling constant $C^{rho Deltarho}_{1}$ extracted in nuclei. Our analysis suggests a two-fold stability criterion to avoid scalar-isovector instabilities: (i) The density $rho_{text{min}}$ corresponding to the lowest pole in the RPA response function should be larger than about 1.2 times the saturation density; (ii) one needs to verify that $rho_{p}(q_{text{pq}})$ exhibits a distinct global minimum and is not a decreasing function for large transferred momenta.
We perform systematic calculations of pairing gaps in semi-magic nuclei across the nuclear chart using the Energy Density Functional method and a {it non-empirical} pairing functional derived, without further approximation, at lowest order in the two -nucleon vacuum interaction, including the Coulomb force. The correlated single-particle motion is accounted for by the SLy4 semi-empirical functional. Rather unexpectedly, both neutron and proton pairing gaps thus generated are systematically close to experimental data. Such a result further suggests that missing effects, i.e. higher partial-waves of the NN interaction, the NNN interaction and the coupling to collective fluctuations, provide an overall contribution that is sub-leading as for generating pairing gaps in nuclei. We find that including the Coulomb interaction is essential as it reduces proton pairing gaps by up to 40%.
We discuss the origin of pathological behaviors that have been recently identified in particle-number-restoration calculations performed within the nuclear energy density functional framework. A regularization method that removes the problematic term s from the multi-reference energy density functional and which applies (i) to any symmetry restoration- and/or generator-coordinate-method-based configuration mixing calculation and (ii) to energy density functionals depending only on integer powers of the density matrices, was proposed in [D. Lacroix, T. Duguet, M. Bender, arXiv:0809.2041] and implemented for particle-number restoration calculations in [M. Bender, T. Duguet, D. Lacroix, arXiv:0809.2045]. In the present paper, we address the viability of non-integer powers of the density matrices in the nuclear energy density functional. Our discussion builds upon the analysis already carried out in [J. Dobaczewski emph{et al.}, Phys. Rev. C textbf{76}, 054315 (2007)]. First, we propose to reduce the pathological nature of terms depending on a non-integer power of the density matrices by regularizing the fraction that relates to the integer part of the exponent using the method proposed in [D. Lacroix, T. Duguet, M. Bender, arXiv:0809.2041]. Then, we discuss the spurious features brought about by the remaining fractional power. Finally, we conclude that non-integer powers of the density matrices are not viable and should be avoided in the first place when constructing nuclear energy density functionals that are eventually meant to be used in multi-reference calculations.
We give a detailed analysis of the origin of spurious divergences and finite steps that have been recently identified in particle-number restoration calculations within the nuclear energy density functional framework. We isolate two distinct levels o f spurious contributions to the energy. The first one is encoded in the definition of the basic energy density functional itself whereas the second one relates to the canonical procedure followed to extend the use of the energy density functional to multi-reference calculations. The first level of spuriosity relates to the long-known self-interaction problem and to the newly discussed self-pairing interaction process which might appear when describing paired systems with energy functional methods using auxiliary reference states of Bogoliubov or BCS type. A minimal correction to the second level of spuriosity to the multi-reference nuclear energy density functional proposed in [D. Lacroix, T. Duguet, M. Bender, arXiv:0809.2041] is shown to remove completely the anomalies encountered in particle-number restored calculations. In particular, it restores sum-rules over (positive) particle numbers that are to be fulfilled by the particle-number-restored formalism. The correction is found to be on the order of several hundreds of keVs up to about 1 MeV in realistic calculations, which is small compared to the total binding energy, but often accounts for a substantial percentage of the energy gain from particle-number restoration and is on the same energy scale as the excitations one addresses with multi-reference energy density functional methods.
Multi-reference calculations along the lines of the Generator Coordinate Method or the restoration of broken symmetries within the nuclear Energy Density Functional (EDF) framework are becoming a standard tool in nuclear structure physics. These calc ulations rely on the extension of a single-reference energy functional, of the Gogny or the Skyrme types, to non-diagonal energy kernels. There is no rigorous constructive framework for this extension so far. The commonly accepted way proceeds by formal analogy with the expressions obtained when applying the generalized Wick theorem to the non-diagonal matrix element of a Hamilton operator between two product states. It is pointed out that this procedure is ill-defined when extended to EDF calculations as the generalized Wick theorem is taken outside of its range of applicability. In particular, such a procedure is responsible for the appearance of spurious divergences and steps in multi-reference EDF energies, as was recently observed in calculations restoring particle number or angular momentum. In the present work, we give a formal analysis of the origin of this problem for calculations with and without pairing, i.e. constructing the density matrices from either Slater determinants or quasi-particle vacua. We propose a correction to energy kernels that removes the divergences and steps, and which is applicable to calculations based on any symmetry restoration or generator coordinate. The method is formally illustrated for particle number restoration and is specified to configuration mixing calculations based on Slater determinants.
43 - T. Duguet , T. Lesinski 2007
The present contribution reports the first systematic finite-nucleus calculations performed using the Energy Density Functional method and a non-empirical pairing functional derived from low-momentum interactions. As a first step, the effects of Coul omb and the three-body force are omitted while only the bare two-nucleon interaction at lowest order is considered. To cope with the finite-range and non-locality of the bare nuclear interaction, the 1S0 channel of Vlowk is mapped onto a convenient operator form. For the first time, neutron-neutron and proton-proton pairing correlations generated in finite nuclei by the direct term of the two-nucleon interaction are characterized in a systematic manner. Eventually, such predictions are compared to those obtained from empirical local functionals derived from density-dependent zero range interactions. The characteristics of the latter are analyzed in view of that comparison and a specific modification of their isovector density dependence is suggested to accommodate Coulomb effects and the isovector trend of neutron gaps at the same time.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا