ترغب بنشر مسار تعليمي؟ اضغط هنا

Approximately 70 percent of the nearby white dwarfs appear to be single stars, with the remainder being members of binary or multiple star systems. The most numerous and most easily identifiable systems are those in which the main sequence companion is an M star, since even if the systems are unresolved the white dwarf either dominates or is at least competitive with the luminosity of the companion at optical wavelengths. Harder to identify are systems where the non-degenerate component has a spectral type earlier than M0 and the white dwarf becomes the less luminous component. Taking Sirius as the prototype, these latter systems are referred to here as Sirius-Like. There are currently 98 known Sirius-Like systems. Studies of the local white dwarf population within 20 parsecs indicate that approximately 8 per cent of all white dwarfs are members of Sirius-Like systems, yet beyond 20 parsecs the frequency of known Sirius-Like systems declines to between 1 and 2 per cent, indicating that many more of these systems remain to be found. Estimates are provided for the local space density of Sirius- Like systems and their relative frequency among both the local white dwarf population and the local population of A to K main sequence stars. The great majority of currently unidentified Sirius-Like systems will likely turn out to be closely separated and unresolved binaries. Ways to observationally detect and study these systems are discussed.
We present chromospheric activity index $Srm_{HK}$ measurements for over 13,000 F, G and K disk stars with high signal-to-noise ratio ($>$ 60) spectra in the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) spectroscopic sample. A parameter $delt a$S is defined as the difference between $Srm_{HK}$ and a `zero emission line fitted by several of the most inactive stars. The $Srm_{HK}$ indices of subgiant stars tend to be much lower than dwarfs, which provide a way to distinguish dwarfs and giants with relatively low resolution spectra. Cooler stars are generally more active and display a larger scatter than hotter stars. Stars associated with the thick disk are in general less active than those of the thin disk. The fraction of K dwarfs that are active drops with vertical distance from the Galactic plane. Metallicity affects $Srm_{HK}$ measurements differently among F, G and K dwarfs in this sample. Using the open clusters NGC 2420, M67 and NGC6791 as calibrations, ages of most field stars in this SDSS sample range from 3-8 Gyr.
124 - J. B. Holberg , T. D. Oswalt , 2012
The white dwarf mass-radius relationship is fundamental to modern astrophysics. It is central to routine estimation of DA white dwarf masses derived from spectroscopic temperatures and gravities. It is also the basis for observational determinations of the white dwarf initial-final mass relation. Nevertheless, definitive and detailed observational confirmations of the mass-radius relation (MRR) remain elusive due to a lack of sufficiently accurate white dwarf masses and radii. Current best estimates of masses and radii allow only broad conclusions about the expected inverse relation between masses and radii in degenerate stars. In this paper we examine a restricted set of 12 DA white dwarf binary systems for which accurate (1) trigonometric parallaxes, (2) spectroscopic effective temperatures and gravities, and (3) gravitational redshifts are available. We consider these three independent constraints on mass and radius in comparison with an appropriate evolved MRR for each star. For the best-determined systems it is found that the DA white dwarfs conform to evolved theoretical MRRs at the 1-{sigma} to 2-{sigma} level. For the white dwarf 40 Eri B (WD0413-077) we find strong evidence for the existence of a thin hydrogen envelope. For other stars improved parallaxes will be necessary before meaningful comparisons are possible. For several systems current parallaxes approach the precision required for the state-of-the-art mass and radius determinations that will be obtained routinely from the Gaia mission. It is demonstrated here how these anticipated results can be used to firmly constrain details of theoretical mass-radius determinations.
We present the chromospheric activity (CA) levels, metallicities and full space motions for 41 F, G, K and M dwarf stars in 36 wide binary systems. Thirty-one of the binaries, contain a white dwarf component. In such binaries the total age can be est imated by adding the cooling age of the white dwarf to an estimate of the progenitors main sequence lifetime. To better understand how CA correlates to stellar age, 14 cluster member stars were also observed. Our observations demonstrate for the first time that in general CA decays with age from 50 Myr to at least 8 Gyr for stars with 1.0 < V-I < 2.4. However, little change occurs in CA level for stars with V-I < 1.0 between 1 Gyr and 5 Gyr, consistent with the results of Pace et al. (2009). Our sample also exhibits a negative correlation between stellar age and metallicity, a positive correlation between stellar age and W space velocity component and the W velocity dispersion increases with age. Finally, the population membership of these wide binaries is examined based upon their U, V, W kinematics, metallicity and CA. We conclude that wide binaries are similar to field and cluster stars in these respects. More importantly, they span a much more continuous range in age and metallicity than is afforded by nearby clusters.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا