ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a comparison of a number of iterative solvers of linear systems of equations for obtaining the fermion propagator in lattice QCD. In particular, we consider chirally invariant overlap and chirally improved Wilson (maximally) twisted mass f ermions. The comparison of both formulations of lattice QCD is performed at four fixed values of the pion mass between 230MeV and 720MeV. For overlap fermions we address adaptive precision and low mode preconditioning while for twisted mass fermions we discuss even/odd preconditioning. Taking the best available algorithms in each case we find that calculations with the overlap operator are by a factor of 30-120 more expensive than with the twisted mass operator.
We present simulation results for lattice QCD with chiral fermions in small volumes, where the epsilon-expansion of chiral perturbation theory applies. Our data for the low lying Dirac eigenvalues, as well as mesonic correlation functions, are in agr eement with analytical predictions. This allows us to extract values for the leading Low Energy Constants F_{pi} and Sigma.
We compare overlap fermions, which are chirally invariant, and Wilson twisted mass fermions in the approach to the chiral limit. Our quenched simulations reveal that with both formulations of lattice fermions pion masses of O(250 MeV) can be reached in practical simulations. Our comparison is done at a fixed lattice spacing a=0.123 fm. Several quantities are measured, such as hadron masses and pseudoscalar decay constants.
We present a systematic comparison of various iterative methods to obtain the fermion propagator with both overlap and twisted mass fermions at fixed pion mass in the quenched approximation. Taking the best available algorithm in each case we find th at calculations with the overlap operator are by a factor of 20-40 more expensive than with the twisted mass operator at the parameter values considered here. For the overlap operator we also compare the efficiency of various methods for calculating the topological index.
We present simulation results employing overlap fermions for the axial correlation functions in the epsilon-regime of chiral perturbation theory. In this regime, finite size effects and topology play a dominant role. Their description by quenched chi ral perturbation theory is compared to our numerical results in quenched QCD. We show that lattices with a linear extent L > 1.1 fm are necessary to interpret the numerical data obtained in distinct topological sectors in terms of the epsilon-expansion. Such lattices are, however, still substantially smaller than the ones needed in standard chiral perturbation theory. However, we also observe severe difficulties at very low values of the quark mass, in particular in the topologically trivial sector.
We present a numerical pilot study of the meson correlation functions in the epsilon-regime of chiral perturbation theory. Based on simulations with overlap fermions we measured the axial and pseudo-scalar correlation functions, and we discuss the im plications for the leading low energy constants in the chiral Lagrangian.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا