ترغب بنشر مسار تعليمي؟ اضغط هنا

We have investigated low energy nuclear spin excitations in strongly correlated electron compound HoCrO$_3$. We observe clear inelastic peaks at $E = 22.18 pm 0.04$ $mu eV$ in both energy loss and gain sides. The energy of the inelastic peaks remains constant in the temperature range 1.5 - 40 K at which they are observed. The intensity of the inelastic peak increases at first with increasing temperature and then decreases at higher temperatures. The temperature dependence of the energy and intensity of the inelastic peaks is very unusual compared to that observed in other Nd, Co and V compounds. Huge quasielastic scattering appears at higher temperatures presumably due to the fluctuating electronic moments of the Ho ions that get increasingly disordered at higher temperatures.
Precise magnetic structures of RMn2O5, with R= Y, Ho, Bi in the commensurate/ferroelectric regime, have been determined by single-crystal neutron diffraction. For each system, the integrated intensities of a large number of independent magnetic Bragg reflections have been measured, allowing unconstrained least-squares refinement of the structures. The analysis confirms the previously reported magnetic configuration in the ab-plane, in particular the existence of zig-zag antiferromagnetic chains. For the Y and Ho compounds additional weak magnetic components parallel to the c-axis were detected which are modulated in phase quadrature with the a-b components. This component is extremely small in the BiMn2O5 sample, therefore supporting symmetric exchange as the principal mechanism inducing ferroelectricity. For HoMn2O5, a magnetic ordering of the Ho moments was observed, which is consistent with a super-exchange interaction through the oxygens. For all three compounds, the point symmetry in the magnetically ordered state is m2m, allowing the polar b-axis found experimentally.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا