ترغب بنشر مسار تعليمي؟ اضغط هنا

78 - T. Caneva , T. Calarco , R. Fazio 2010
The number of defects which are generated on crossing a quantum phase transition can be minimized by choosing properly designed time-dependent pulses. In this work we determine what are the ultimate limits of this optimization. We discuss under which conditions the production of defects across the phase transition is vanishing small. Furthermore we show that the minimum time required to enter this regime is $Tsim pi/Delta$, where $Delta$ is the minimum spectral gap, unveiling an intimate connection between an optimized unitary dynamics and the intrinsic measure of the Hilbert space for pure states. Surprisingly, the dynamics is non-adiabatic, this result can be understood by assuming a simple two-level dynamics for the many-body system. Finally we classify the possible dynamical regimes in terms of the action $s=TDelta$.
We introduce a quantum version of the Game of Life and we use it to study the emergence of complexity in a quantum world. We show that the quantum evolution displays signatures of complex behaviour similar to the classical one, however a regime exist s, where the quantum Game of Life creates more complexity, in terms of diversity, with respect to the corresponding classical reversible one.
A rigorous quantum theory of atomic collisions in the presence of radio frequency (rf) magnetic fields is developed and applied to elucidate the effects of combined dc and rf magnetic fields on elastic scattering in ultracold collisions of Rb atoms. We show that rf fields can be used to induce Feshbach resonances, which can be tuned by varying the amplitude and frequency of the rf field. The rf-induced Feshbach resonances occur also in collisions of atoms in low-field-seeking states at moderate rf field strengths easily available in atom chip experiments, which opens up the world of tunable interactions to magnetically trappable atomic quantum gases.
By means of optimal control techniques we model and optimize the manipulation of the external quantum state (center-of-mass motion) of atoms trapped in adjustable optical potentials. We consider in detail the cases of both non interacting and interac ting atoms moving between neighboring sites in a lattice of a double-well optical potentials. Such a lattice can perform interaction-mediated entanglement of atom pairs and can realize two-qubit quantum gates. The optimized control sequences for the optical potential allow transport faster and with significantly larger fidelity than is possible with processes based on adiabatic transport.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا