ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider the problem of the implementation of Stimulated Raman Adiabatic Passage (STIRAP) processes in degenerate systems, with a view to be able to steer the system wave function from an arbitrary initial superposition to an arbitrary target supe rposition. We examine the case a $N$-level atomic system consisting of $ N-1$ ground states coupled to a common excited state by laser pulses. We analyze the general case of initial and final superpositions belonging to the same manifold of states, and we cover also the case in which they are non-orthogonal. We demonstrate that, for a given initial and target superposition, it is always possible to choose the laser pulses so that in a transformed basis the system is reduced to an effective three-level $Lambda$ system, and standard STIRAP processes can be implemented. Our treatment leads to a simple strategy, with minimal computational complexity, which allows us to determine the laser pulses shape required for the wanted adiabatic steering.
We present a theoretical study of a hybrid circuit-QED system composed of two semiconducting charge-qubits confined in a microwave resonator. The qubits are defined in terms of the charge states of two spatially separated double quantum dots (DQDs) w hich are coupled to the same photon mode in the microwave resonator. We analyze a transport setup where each DQD is attached to electronic reservoirs and biased out-of-equilibrium by a large voltage, and study how electron transport across each DQD is modified by the coupling to the common resonator. In particular, we show that the inelastic current through each DQD reflects an indirect qubit-qubit interaction mediated by off-resonant photons in the microwave resonator. As a result of this interaction, both charge qubits stay entangled in the steady (dissipative) state. Finite shot noise cross-correlations between currents across distant DQDs are another manifestation of this nontrivial steady-state entanglement.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا