ترغب بنشر مسار تعليمي؟ اضغط هنا

154 - T. Arai , S. Matsuura , J. Bock 2015
We report measurements of the Diffuse Galactic Light (DGL) spectrum in the near-infrared, spanning the wavelength range 0.95-1.65 {mu}m by the Cosmic Infrared Background ExpeRiment (CIBER). Using the low-resolution spectrometer (LRS) calibrated for a bsolute spectro-photometry, we acquired long-slit spectral images of the total diffuse sky brightness towards four high-latitude fields spread over four sounding rocket flights. To separate the DGL spectrum from the total sky brightness, we correlated the spectral images with a 100 {mu}m intensity map, which traces the dust column density in optically thin regions. The measured DGL spectrum shows no resolved features and is consistent with other DGL measurements in the optical and at near-infrared wavelengths longer than 1.8 {mu}m. Our result implies that the continuum is consistently reproduced by models of scattered starlight in the Rayleigh scattering regime with a few large grains.
69 - K. Tsumura , T. Arai , J. Battle 2011
Absolute spectrophotometric measurements of diffuse radiation at 1 mu m to 2 mu m are crucial to our understanding of the radiative content of the Universe from nucleosynthesis since the epoch of reionization, the composition and structure of the Zod iacal dust cloud in our solar system, and the diffuse galactic light arising from starlight scattered by interstellar dust. The Low Resolution Spectrometer (LRS) on the rocket-borne Cosmic Infrared Background Experiment (CIBER) is a lambda / Delta lambda sim 15-30 absolute spectrophotometer designed to make precision measurements of the absolute near-infrared sky brightness between 0.75 mu m < lambda < 2.1 mu m. This paper presents the optical, mechanical and electronic design of the LRS, as well as the ground testing, characterization and calibration measurements undertaken before flight to verify its performance. The LRS is shown to work to specifications, achieving the necessary optical and sensitivity performance. We describe our understanding and control of sources of systematic error for absolute photometry of the near-infrared extragalactic background light.
77 - M. Zemcov , T. Arai , J. Battle 2011
The Cosmic Infrared Background Experiment (CIBER) is a suite of four instruments designed to study the near infrared (IR) background light from above the Earths atmosphere. The instrument package comprises two imaging telescopes designed to character ize spatial anisotropy in the extragalactic IR background caused by cosmological structure during the epoch of reionization, a low resolution spectrometer to measure the absolute spectrum of the extragalactic IR background, and a narrow band spectrometer optimized to measure the absolute brightness of the Zodiacal light foreground. In this paper we describe the design and characterization of the CIBER payload. The detailed mechanical, cryogenic, and electrical design of the system are presented, including all system components common to the four instruments. We present the methods and equipment used to characterize the instruments before and after flight, and give a detailed description of CIBERs flight profile and configurations. CIBER is designed to be recoverable and has flown twice, with modifications to the payload having been informed by analysis of the first flight data. All four instruments performed to specifications during the second flight, and the scientific data from this flight are currently being analyzed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا