ترغب بنشر مسار تعليمي؟ اضغط هنا

180 - D. Sluse , T. Anguita (3 2013
Multiply-imaged quasars and AGNs observed in the mid-infrared (MIR) range are commonly assumed to be unaffected by the microlensing produced by the stars in their lensing galaxy. In this paper, we investigate the validity domain of this assumption. I ndeed, that premise disregards microlensing of the accretion disc in the MIR range, and does not account for recent progress in our knowledge of the dusty torus. To simulate microlensing, we first built a simplified image of the quasar composed of an accretion disc, and of a larger ring-like torus. The mock quasars are then microlensed using an inverse ray-shooting code. We simulated the wavelength and size dependence of microlensing for different lensed image types and fraction of compact objects projected in the lens. This allows us to derive magnification probabilities as a function of wavelength, as well as to calculate the microlensing-induced deformation of the spectral energy distribution of the lensed images. We find that microlensing variations as large as 0.1 mag are very common at 11 microns (observer-frame). The main signal comes from microlensing of the accretion disc, which may be significant even when the fraction of flux from the disc is as small as 5 % of the total flux. We also show that the torus of sources with Lbol <~ 10^45 erg/s is expected to be noticeably microlensed. Microlensing may thus be used to get insight into the rest near-infrared inner structure of AGNs. Finally, we investigate whether microlensing in the mid-infrared can alter the so-called Rcusp relation that links the fluxes of the lensed images triplet produced when the source lies close to a cusp macro-caustic. This relation is commonly used to identify massive (dark-matter) substructures in lensing galaxies. We find that significant deviations from Rcusp may be expected, which means that microlensing can explain part of the flux ratio problem.
We present the first galaxy scale lens catalog from the second Red-Sequence Cluster Survey. The catalog contains 60 lensing system candidates comprised of Luminous Red Galaxy (LRG) lenses at 0.2 < z < 0.5 surrounded by blue arcs or apparent multiple images of background sources. The catalog is a valuable complement to previous galaxy-galaxy lens catalogs as it samples an intermediate lens redshift range and is composed of bright sources and lenses that allow easy follow-up for detailed analysis. Mass and mass-to-light ratio estimates reveal that the lens galaxies are massive (<M>~5.5x10e11 M_sun/h) and rich in dark matter (<M/L>~14 M_sun/L_sun,B*h). Even though a slight increasing trend in the mass-to-light ratio is observed from z=0.2 to z=0.5, current redshift and light profile measurements do not allow stringent constraints on the mass-to-light ratio evolution of LRGs.
34 - T. Anguita 2009
[abridged] We present VLT/FORS1 spectroscopic follow-up observations and HST/WFPC2 imaging of the system COSMOS 5921+0638, which exhibits quadruply lensed images and a perfect Einstein ring. We investigate the nature of COSMOS 5921+0638 by studying i ts photometric, spectroscopic and physical properties. We completed both an environmental analysis and detailed analytical and grid-based mass modeling of the system. We measured the redshifts of the lensing galaxy in COSMOS 5921+0638 (z_l=0.551+/-0.001) and 9 additional galaxies in the field (5 of them at z~0.35). The redshift of the lensed source was inferred by identifying a candidate Lya line at z_s=3.14+/-0.05. The mass modeling reveals the requirement of a small external shear (gamma=0.038), which is slightly larger than the lensing contribution expected by galaxy groups along the line-of-sight (kappa_groups~0.01 and gamma_groups~0.005). The estimated time-delays between the different images are of the order of hours to half a week and the total magnification of the background source is mu~150. The measured mass-to-light ratio of the lensing galaxy within the Einstein ring is M/L_B~8.5+/-1.6. Our analysis indicates that the ring and point-like structures in COSMOS 5921+0638 consist of a lensed high redshift galaxy hosting a low luminosity AGN (LLAGN). Flux ratio anomalies observed in the lensed AGN images are probably due to microlensing by stars in the lensing galaxy and/or a combination of static phenomena. Because of its short time-delays and the possibility of microlensing, COSMOS 5921+0638 is a promising laboratory for future studies of LLAGNs.
We report on the redshift of the lensing galaxy and of the quasar QJ 0158-4325 and on the lens model of the system. A deep VLT/FORS2 spectrum and HST/NICMOS-F160W images are deconvolved. From the images we derive the light profile of the lensing gala xy and an accurate relative astrometry for the system. In addition we measure the flux ratio between the quasar images in the MgII emission line to constrain the mass model. From the spectrum we measure the redshift of the lensing galaxy (z=0.317+/-0.001) and of the quasar (z=1.294+/-0.008). Using the flux ratio in the lens model allows to discard the SIE as a suitable approximation of the lens potential. On the contrary the truncated-PIEMD gives a good fit to the lens and leads to a time delay of t(A-B)=-14.5+/-0.1 days, with H0=73 km/s/Mpc. Using the flux ratio to constrain the mass model favors the truncated-PIEMD over the SIE, while ignoring this constraint leaves the choice open.
CONTEXT: Gravitationally lensed quasars constitute an independent tool to derive H0 through time-delays; they offer as well the opportunity to study the mass distribution and interstellar medium of their lensing galaxies and, through microlensing the y also allow one to study details of the emitting source. AIMS: For such studies, one needs to have an excellent knowledge of the close environment of the lensed images in order to model the lensing potential: this means observational data over a large field-of-view and spectroscopy at high spatial resolution. METHODS: We present VIMOS integral field observations around four lensed quasars: HE 0230-2130, RX J0911.4+0551, H 1413+117 and B 1359+154. Using the low, medium and high resolution modes, we study the quasar images and the quasar environments, as well as provide a detailed report of the data reduction. RESULTS: Comparison between the quasar spectra of the different images reveals differences for HE 0230-2130, RX J0911.4+0551 and H 1413+117: flux ratios between the images of the same quasar are different when measured in the emission lines and in the continuum. We have also measured the redshifts of galaxies in the neighborhood of HE 0230-2130 and RX J0911.4+0551 which possibly contribute to the total lensing potential. CONCLUSIONS: A careful analysis reveals that microlensing is the most natural explanation for the (de)magnification of the continuum emitting region of the background sources. In HE 0230-2130, image D is likely to be affected by microlensing magnification; in RX J0911.4+0551, images A1 and A3 are likely to be modified by microlensing de-magnification and in H 1413+117, at least image D is affected by microlensing.
89 - T. Anguita 2008
We use the high magnification event seen in the 1999 OGLE campaign light curve of image C of the quadruply imaged gravitational lens Q2237+0305 to study the structure of the quasar engine. We have obtained g- and r-band photometry at the Apache Point Observatory 3.5m telescope where we find that the event has a smaller amplitude in the r-band than in the g- and OGLE V-bands. By comparing the light curves with microlensing simulations we obtain constraints on the sizes of the quasar regions contributing to the g- and r-band flux. Assuming that most of the surface mass density in the central kiloparsec of the lensing galaxy is due to stars and by modeling the source with a Gaussian profile, we obtain for the Gaussian width 1.20 x 10^15 sqrt(M/0.1M_sun)cm < sigma_g < 7.96 x 10^15 sqrt(M/0.1Msun) cm, where M is the mean microlensing mass, and a ratio sigma_r/sigma_g=1.25^{+0.45}_{-0.15}. With the limits on the velocity of the lensing galaxy from Gil-Merino et al. (2005) as our only prior, we obtain 0.60 x 10^15 sqrt(M/0.1Msun) cm < sigma_g < 1.57 x 10^15 sqrt(M/0.1Msun) cm and a ratio sigma_r/sigma_g=1.45^{+0.90}_{-0.25} (all values at 68 percent confidence). Additionally, from our microlensing simulations we find that, during the chromatic microlensing event observed, the continuum emitting region of the quasar crossed a caustic at >72 percent confidence.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا