ترغب بنشر مسار تعليمي؟ اضغط هنا

97 - T. An , Z. Paragi , S. Frey 2013
The galaxy 3C,316 is the brightest in the radio band among the optically-selected candidates exhibiting double-peaked narrow optical emission lines. Observations with the Very Large Array (VLA), Multi-Element Remotely Linked Interferometer Network (e -MERLIN), and the European VLBI Network (EVN) at 5,GHz have been used to study the radio structure of the source in order to determine the nature of the nuclear components and to determine the presence of radio cores. The e-MERLIN image of 3C 316 reveals a collimated coherent east-west emission structure with a total extent of about 3 kpc. The EVN image shows seven discrete compact knots on an S-shaped line. However, none of these knots could be unambiguously identified as an AGN core. The observations suggest that the majority of the radio structure belongs to a powerful radio AGN, whose physical size and radio spectrum classify it as a compact steep-spectrum source. Given the complex radio structure with radio blobs and knots, the possibility of a kpc-separation dual AGN cannot be excluded if the secondary is either a naked core or radio quiet.
We experimentally demonstrate the manipulation of magnetization relaxation utilizing a temperature difference across the thickness of an yttrium iron garnet/platinum (YIG/Pt) hetero-structure: the damping is either increased or decreased depending on the sign of the temperature gradient. This effect might be explained by a thermally-induced spin torque on the magnetization precession. The heat-induced variation of the damping is detected by microwave techniques as well as by a DC voltage caused by spin pumping into the adjacent Pt layer and the subsequent conversion into a charge current by the inverse spin Hall effect.
We present results on the compact steep-spectrum quasar 3C 48 from observations with the VLBA, MERLIN and EVN at multiple radio frequencies. In the 1.5-GHz VLBI images, the radio jet is characterized by a series of bright knots. The active nucleus is embedded in the southernmost VLBI component A, which is further resolved into two sub-components A1 and A2 at 4.8 and 8.3 GHz. A1 shows a flat spectrum and A2 shows a steep spectrum. The most strongly polarized VLBI components are located at component C $sim$0.25 arcsec north of the core. The polarization angles at C show gradual changes across the jet width at all observed frequencies, indicative of a gradient in the emission-weighted intrinsic polarization angle across the jet and possibly a systematic gradient in the rotation measure; moreover, the percentage of polarization increases near the curvature at C, likely consistent with the presence of a local jet-ISM interaction and/or changing magnetic-field directions. The hot spot B shows a higher rotation measure, and has no detected proper motion. These facts provide some evidence for a stationary shock in the vicinity of B. Comparison of the present VLBI observations with those made 8.43 years ago suggests a proper motion of $beta_{app}=3.7pm0.4 c$ for A2 to the north. The apparent superluminal motion suggests that the relativistic jet plasma moves at a velocity of $gtrsim0.96 c$ if the jet is viewed at an inclination angle less than $20degr$. A simple precessing jet model and a hydrodynamical isothermal jet model with helical-mode Kelvin-Helmholtz instabilities are used to fit the oscillatory jet trajectory of 3C 48 defined by the bright knots.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا