ترغب بنشر مسار تعليمي؟ اضغط هنا

In the present work we illustrate that classical but nonlinear systems may possess features reminiscent of quantum ones, such as memory, upon suitable external perturbation. As our prototypical example, we use the two-dimensional complex Ginzburg-Lan dau equation in its vortex glass regime. We impose an external drive as a perturbation mimicking a quantum measurement protocol, with a given measurement rate (the rate of repetition of the drive) and mixing rate (characterized by the intensity of the drive). Using a variety of measures, we find that the system may or may not retain its coherence, statistically retrieving its original glass state, depending on the strength and periodicity of the perturbing field. The corresponding parametric regimes and the associated energy cascade mechanisms involving the dynamics of vortex waveforms and domain boundaries are discussed.
We exemplify the impact of beyond Lee-Huang-Yang (LHY) physics, especially due to intercomponent correlations, in the ground state and the quench dynamics of one-dimensional so-called quantum droplets using an ab-initio nonperturbative approach. It i s found that the droplet Gaussian-shaped configuration arising for intercomponent attractive couplings becomes narrower for stronger intracomponent repulsion and transits towards a flat-top structure either for larger particle numbers or weaker intercomponent attraction. Additionally, a harmonic trap prevents the flat-top formation. At the balance point where mean-field interactions cancel out, we show that quantum fluctuations prevent the collapse of LHY fluids for larger atom numbers and a correlation hole is present in the few particle limit of these fluids as well as for flat-top droplets. Introducing mass-imbalance, droplets experience intercomponent mixing and excitation signatures are identified for larger masses. Monitoring the droplet expansion (breathing motion) upon considering interaction quenches to stronger (weaker) attractions we explicate that beyond LHY correlations result in a reduced velocity (breathing frequency). Strikingly, the droplets feature two-body anti-correlations (correlations) at the same position (longer distances). Our findings pave the way for probing correlation-induced phenomena of droplet dynamics in current ultracold atom experiments.
We study the statistical mechanics and the dynamical relaxation process of modulationally unstable one-dimensional quantum droplets described by a modified Gross-Pitaevskii equation. To determine the classical partition function thereof, we leverage the semi-analytical transfer integral operator (TIO) technique. The latter predicts a distribution of the observed wave function amplitudes and yields two-point correlation functions providing insights into the emergent dynamics involving quantum droplets. We compare the ensuing TIO results with the probability distributions obtained at large times of the modulationally unstable dynamics as well as with the equilibrium properties of a suitably constructed Langevin dynamics. We find that the instability leads to the spontaneous formation of quantum droplets featuring multiple collisions and consecutively are found to coalesce at large evolution times. Our results from the distinct methodologies are in good agreement aside from the case of low temperatures in the special limit where the droplet widens. In this limit, the distribution acquires a pronounced bimodal character, exhibiting a deviation between the TIO solution and the Langevin dynamics still captured by the modified Gross-Pitaevskii framework.
The Salerno model constitutes an intriguing interpolation between the integrable Ablowitz-Ladik (AL) model and the more standard (non-integrable) discrete nonlinear Schr{o}dinger (DNLS) one. The competition of local on-site nonlinearity and nonlinear dispersion governs the thermalization of this model. Here, we investigate the statistical mechanics of the Salerno one-dimensional lattice model in the nonintegrable case and illustrate the thermalization in the Gibbs regime. As the parameter interpolating between the two limits (from DNLS towards AL) is varied, the region in the space of initial energy and norm-densities leading to thermalization expands. The thermalization in the non-Gibbs regime heavily depends on the finite system size; we explore this feature via direct numerical computations for different parametric regimes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا