ترغب بنشر مسار تعليمي؟ اضغط هنا

Results of resistivity, Hall effect, magnetoresistance, susceptibility and heat capacity measurements are presented for single crystals of indium-doped tin telluride with compositions Sn$_{.988-x}$In$_x$Te where $0 leq x leq 8.4 %$, along with micros tructural analysis based on transmission electron microscopy. For small indium concentrations, $x leq 0.9 %$ the material does not superconduct above 0.3 K, and the transport properties are consistent with simple metallic behavior. For $x geq 2.7 %$ the material exhibits anomalous low temperature scattering and for $x geq 6.1 %$ bulk superconductivity is observed with critical temperatures close to 2 K. Intermediate indium concentrations $2.7% leq x leq 3.8%$ do not exhibit bulk superconductivity above 0.7 K. Susceptibility data indicate the absence of magnetic impurities, while magnetoresistance data are inconsistent with localization effects, leading to the conclusion that indium-doped SnTe is a candidate charge Kondo system, similar to thallium-doped PbTe.
We report results of low-temperature thermodynamic and transport measurements of Pb_{1-x}Tl_{x}Te single crystals for Tl concentrations up to the solubility limit of approximately x = 1.5%. For all doped samples, we observe a low-temperature resistiv ity upturn that scales in magnitude with the Tl concentration. The temperature and field dependence of this upturn are consistent with a charge Kondo effect involving degenerate Tl valence states differing by two electrons, with a characteristic Kondo temperature T_K ~ 6 K. The observation of such an effect supports an electronic pairing mechanism for superconductivity in this material and may account for the anomalously high T_c values.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا