ترغب بنشر مسار تعليمي؟ اضغط هنا

We have derived a new method which allows to compute the full and the Pauli reference kinetic potentials for atoms and molecules in a real space representation. This is done by applying the optimized effective potential (OEP) method to {the} Kohn-Sha m non-interacting kinetic energy expression. Additionally, we have also derived a simplified OEP variant based on the common energy denominator approximation which has proven to give much more stable and robust results than the original OEP one. Moreover, we have also proved that at the solution point our approach is formally equivalent to the commonly used Bartolotti-Acharya formula.
We extend the range-separated double-hybrid RSH+MP2 method [J. G. Angyan et al., Phys. Rev. A 72, 012510 (2005)], combining long-range HF exchange and MP2 correlation with a short-range density functional, to a fully self-consistent version using the optimized-effective-potential technique in which the orbitals are obtained from a local potential including the long-range HF and MP2 contributions. We test this approach, that we name RS-OEP2, on a set of small closed-shell atoms and molecules. For the commonly used value of the range-separation parameter $mu=0.5$ bohr$^{-1}$, we find that self-consistency does not seem to bring any improvement for total energies, ionization potentials, and electronic affinities. However, contrary to the non-self-consistent RSH+MP2 method, the present RS-OEP2 method gives a LUMO energy which physically corresponds to a neutral excitation energy and gives local exchange-correlation potentials which are reasonably good approximations to the corresponding Kohn-Sham quantities. At a finer scale, we find that RS-OEP2 gives largely inaccurate correlation potentials and correlated densities, which points to the need of further improvement of this type of range-separated double hybrids.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا