ترغب بنشر مسار تعليمي؟ اضغط هنا

We present rotation periods for 71 single dwarf members of the open cluster NGC6811 determined using photometry from NASAs Kepler Mission. The results are the first from The Kepler Cluster Study which combine Keplers photometry with ground-based spec troscopy for cluster membership and binarity. The rotation periods delineate a tight sequence in the NGC6811 color-period diagram from ~1 day at mid-F to ~11 days at early-K spectral type. This result extends to ~1 Gyr similar prior results in the ~600 Myr Hyades and Praesepe clusters, suggesting that rotation periods for cool dwarf stars delineate a well-defined surface in the 3-dimensional space of color (mass), rotation, and age. It implies that reliable ages can be derived for field dwarf stars with measured colors and rotation periods, and it promises to enable further understanding of various aspects of stellar rotation and activity for cool stars.
Employing photometric rotation periods for solar-type stars in NGC 1039 [M 34], a young, nearby open cluster, we use its mass-dependent rotation period distribution to derive the clusters age in a distance independent way, i.e., the so-called gyrochr onology method. We present an analysis of 55 new rotation periods,using light curves derived from differential photometry, for solar type stars in M 34. We also exploit the results of a recently-completed, standardized, homogeneous BVIc CCD survey of the cluster in order to establish photometric cluster membership and assign B-V colours to each photometric variable. We describe a methodology for establishing the gyrochronology age for an ensemble of solar-type stars. Empirical relations between rotation period, photometric colour and stellar age (gyrochronology) are used to determine the age of M 34. Based on its position in a colour-period diagram, each M 34 member is designated as being either a solid-body rotator (interface or I-star), a differentially rotating star (convective or C-star) or an object which is in some transitory state in between the two (gap or g-star). Fitting the period and photometric colour of each I-sequence star in the cluster, we derive the clusters mean gyrochronology age. 47/55 of the photometric variables lie along the loci of the cluster main sequence in V/B-V and V/V-I space. We are further able to confirm kinematic membership of the cluster for half of the periodic variables [21/55], employing results from an on-going radial velocity survey of the cluster. For each cluster member identified as an I-sequence object in the colour-period diagram, we derive its individual gyrochronology age, where the mean gyro age of M 34 is found to be 193 +/- 9 Myr, formally consistent (within the errors) with that derived using several distance-dependent, photometric isochrone methods (250 +/- 67 Myr).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا