ترغب بنشر مسار تعليمي؟ اضغط هنا

A complex quantum system can be constructed by coupling simple quantum elements to one another. For example, trapped-ion or superconducting quantum bits may be coupled by Coulomb interactions, mediated by the exchange of virtual photons. Alternativel y quantum objects can be coupled by the exchange of real photons, particularly when driven within resonators that amplify interactions with a single electro-magnetic mode. However, in such an open system, the capacity of a coupling channel to convey quantum information or generate entanglement may be compromised. Here, we realize phase-coherent interactions between two spatially separated, near-ground-state mechanical oscillators within a driven optical cavity. We observe also the noise imparted by the optical coupling, which results in correlated mechanical fluctuations of the two oscillators. Achieving the quantum backaction dominated regime opens the door to numerous applications of cavity optomechanics with a complex mechanical system. Our results thereby illustrate the potential, and also the challenge, of coupling quantum objects with light.
Supermassive black hole binaries, cosmic strings, relic gravitational waves from inflation, and first order phase transitions in the early universe are expected to contribute to a stochastic background of gravitational waves in the 10^(-9) Hz-10^(-7) Hz frequency band. Pulsar timing arrays (PTAs) exploit the high precision timing of radio pulsars to detect signals at such frequencies. Here we present a time-domain implementation of the optimal cross-correlation statistic for stochastic background searches in PTA data. Due to the irregular sampling typical of PTA data as well as the use of a timing model to predict the times-of-arrival of radio pulses, time-domain methods are better suited for gravitational wave data analysis of such data. We present a derivation of the optimal cross-correlation statistic starting from the likelihood function, a method to produce simulated stochastic background signals, and a rigorous derivation of the scaling laws for the signal-to-noise ratio of the cross-correlation statistic in the two relevant PTA regimes: the weak signal limit where instrumental noise dominates over the gravitational wave signal at all frequencies, and a second regime where the gravitational wave signal dominates at the lowest frequencies.
We derive the close pair fractions and volume merger rates as a function of luminosity and morphology for galaxies in the GAMA survey with -23 < M(r) < -17 at 0.01 < z < 0.22. The merger fraction is about 0.015 at all luminosities (assuming 1/2 of pa irs merge) and the volume merger rate is about 0.00035 per cubic Mpc per Gyr. Dry mergers (between red or spheroidal galaxies) are uncommon and decrease with decreasing luminosity. Fainter mergers are wet, between blue or disky galaxies. Damp mergers (one of each type) follow the average of dry and wet mergers. In the brighter luminosity bin (-23 < M(r) < -20) the merger rate evolution is flat, irrespective of colour or morphology. The makeup of the merging population does not change since z = 0.2. Major mergers and dry mergers appear comparatively unimportant in the buildup of the red sequence over the past 2 Gyr. We compare the colour, morphology, environmental density and degree of activity of galaxies in pairs to those of more isolated objects in the same volume. Galaxies in close pairs tend to be both redder and slightly more spheroid-dominated. This may be due to harassment in multiple previous passes prior to the current interaction. Galaxy pairs do not appear to prefer significantly denser environments. There is no evidence of an enhancement in the AGN fraction in pairs, compared to other galaxies in the same volume.
We create an ultracold-atoms-based cavity optomechanical system in which as many as six distinguishable mechanical oscillators are prepared, and optically detected, near their ground states of motion. We demonstrate that the motional state of one osc illator can be selectively addressed while preserving neighboring oscillators near their ground states to better than 95% per excitation quantum. We also show that our system offers nanometer-scale spatial resolution of each mechanical element via optomechanical imaging. This technique enables in-situ, parallel sensing of potential landscapes, a capability relevant to active research areas of atomic physics and force-field detection in optomechanics.
We present a catalog of Faraday rotation measures (RMs) and redshifts for 4003 extragalactic radio sources detected at 1.4 GHz, derived by identifying optical counterparts and spectroscopic redshifts for linearly polarized radio sources from the NRAO VLA Sky Survey. This catalog is more than an order of magnitude larger than any previous sample of RM vs. redshift, and covers the redshift range 0 < z < 5.3 ; the median redshift of the catalog is z = 0.70, and there are more than 1500 sources at redshifts z > 1. For 3650 of these sources at Galactic latitudes |b| >= 20 degrees, we present a second catalog in which we have corrected for the foreground Faraday rotation of the Milky Way, resulting in an estimate of the residual rotation measure (RRM) that aims to isolate the contribution from extragalactic magnetic fields. We find no significant evolution of RRM with redshift, but observe a strong anti-correlation between RRM and fractional polarization, p, that we argue is the result of beam depolarization from small-scale fluctuations in the foreground magnetic field or electron density. We suggest that the observed variance in RRM and the anti-correlation of RRM with p both require a population of magnetized intervening objects that lie outside the Milky Way but in the foreground to the emitting sources.
We present rotation periods for 71 single dwarf members of the open cluster NGC6811 determined using photometry from NASAs Kepler Mission. The results are the first from The Kepler Cluster Study which combine Keplers photometry with ground-based spec troscopy for cluster membership and binarity. The rotation periods delineate a tight sequence in the NGC6811 color-period diagram from ~1 day at mid-F to ~11 days at early-K spectral type. This result extends to ~1 Gyr similar prior results in the ~600 Myr Hyades and Praesepe clusters, suggesting that rotation periods for cool dwarf stars delineate a well-defined surface in the 3-dimensional space of color (mass), rotation, and age. It implies that reliable ages can be derived for field dwarf stars with measured colors and rotation periods, and it promises to enable further understanding of various aspects of stellar rotation and activity for cool stars.
We seek to reconcile observations of small source sizes in the solar corona at 327 MHz with predictions of scattering models that incorporate refractive index effects, inner scale effects and a spherically diverging wavefront. We use an empirical pre scription for the turbulence amplitude $C_{N}^{2}(R)$ based on VLBI observations by Spangler and coworkers of compact radio sources against the solar wind for heliocentric distances $R approx$ 10--50 $R_{odot}$. We use the Coles & Harmon model for the inner scale $l_{i}(R)$, that is presumed to arise from cyclotron damping. In view of the prevalent uncertainty in the power law index that characterizes solar wind turbulence at various heliocentric distances, we retain this index as a free parameter. We find that the inclusion of spherical divergence effects suppresses the predicted source size substantially. We also find that inner scale effects significantly reduce the predicted source size. An important general finding for solar sources is that the calculations substantially underpredict the observed source size. Three possible, non-exclusive, interpretations of this general result are proposed. First and simplest, future observations with better angular resolution will detect much smaller sources. Consistent with this, previous observations of small sources in the corona at metric wavelengths are limited by the instrument resolution. Second, the spatially-varying level of turbulence $C_{N}^{2}(R)$ is much larger in the inner corona than predicted by straightforward extrapolation Sunwards of the empirical prescription, which was based on observations between 10--50 $R_{odot}$. Either the functional form or the constant of proportionality could be different. Third, perhaps the inner scale is smaller than the model, leading to increased scattering.
Employing photometric rotation periods for solar-type stars in NGC 1039 [M 34], a young, nearby open cluster, we use its mass-dependent rotation period distribution to derive the clusters age in a distance independent way, i.e., the so-called gyrochr onology method. We present an analysis of 55 new rotation periods,using light curves derived from differential photometry, for solar type stars in M 34. We also exploit the results of a recently-completed, standardized, homogeneous BVIc CCD survey of the cluster in order to establish photometric cluster membership and assign B-V colours to each photometric variable. We describe a methodology for establishing the gyrochronology age for an ensemble of solar-type stars. Empirical relations between rotation period, photometric colour and stellar age (gyrochronology) are used to determine the age of M 34. Based on its position in a colour-period diagram, each M 34 member is designated as being either a solid-body rotator (interface or I-star), a differentially rotating star (convective or C-star) or an object which is in some transitory state in between the two (gap or g-star). Fitting the period and photometric colour of each I-sequence star in the cluster, we derive the clusters mean gyrochronology age. 47/55 of the photometric variables lie along the loci of the cluster main sequence in V/B-V and V/V-I space. We are further able to confirm kinematic membership of the cluster for half of the periodic variables [21/55], employing results from an on-going radial velocity survey of the cluster. For each cluster member identified as an I-sequence object in the colour-period diagram, we derive its individual gyrochronology age, where the mean gyro age of M 34 is found to be 193 +/- 9 Myr, formally consistent (within the errors) with that derived using several distance-dependent, photometric isochrone methods (250 +/- 67 Myr).
We have been using Keck laser guide star adaptive optics to monitor the orbits of ultracool binaries, providing dynamical masses at lower luminosities and temperatures than previously available and enabling strong tests of theoretical models. We have identified three specific problems with theory: (1) We find that model color-magnitude diagrams cannot be reliably used to infer masses as they do not accurately reproduce the colors of ultracool dwarfs of known mass. (2) Effective temperatures inferred from evolutionary model radii are typically inconsistent with temperatures derived from fitting atmospheric models to observed spectra by 100-300 K. (3) For the only known pair of field brown dwarfs with a precise mass (3%) and age determination (~25%), the measured luminosities are ~2-3x higher than predicted by model cooling rates (i.e., masses inferred from Lbol and age are 20-30% larger than measured). To make progress in understanding the observed discrepancies, more mass measurements spanning a wide range of luminosity, temperature, and age are needed, along with more accurate age determinations (e.g., via asteroseismology) for primary stars with brown dwarf binary companions. Also, resolved optical and infrared spectroscopy are needed to measure lithium depletion and to characterize the atmospheres of binary components in order to better assess model deficiencies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا