ترغب بنشر مسار تعليمي؟ اضغط هنا

Transportation networks serve as windows into the complex world of urban systems. By properly characterizing a road network, we can therefore better understand its encompassing urban system. This study offers a geometrical approach towards capturing inherent properties of urban road networks. It offers a robust and efficient methodology towards defining and extracting three relevant indicators of road networks: area, line, and point thresholds, through measures of their grid equivalents. By applying the methodology to 50 U.S. urban systems, we successfully observe differences between eastern versus western, coastal versus inland, and old versus young, cities. Moreover, we show that many socio-economic characteristics as well as travel patterns within urban systems are directly correlated with their corresponding area, line, and point thresholds.
This article analyzes the complex geometry of urban transportation networks as a gateway to understanding their encompassing urban systems. Using a proposed ring-buffer approach and applying it to 50 urban areas in the United States, we measure road lengths in concentric rings from carefully-selected urban centers and study how the trends evolve as we move away from these centers. Overall, we find that the complexity of urban transportation networks is naturally coupled, consisting of two distinct patterns: (1) a fractal component (i.e., power law) that represent a uniform grid, and (2) a second component that can be exponential, power law, or logarithmic that captures changes in road density. From this second component, we introduce two new indices, density index and decay index, which jointly capture essential characteristics of urban systems and therefore can help us gain new insights into how cities evolve.
In this era of Big Data, proficient use of data mining is the key to capture useful information from any dataset. As numerous data mining techniques make use of information theory concepts, in this paper, we discuss how Fisher information (FI) can be applied to analyze patterns in Big Data. The main advantage of FI is its ability to combine multiple variables together to inform us on the overall trends and stability of a system. It can therefore detect whether a system is losing dynamic order and stability, which may serve as a signal of an impending regime shift. In this work, we first provide a brief overview of Fisher information theory, followed by a simple step-by-step numerical example on how to compute FI. Finally, as a numerical demonstration, we calculate the evolution of FI for GDP per capita (current US Dollar) and total population of the USA from 1960 to 2013.
Metros (heavy rail transit systems) are integral parts of urban transportation systems. Failures in their operations can have serious impacts on urban mobility, and measuring their robustness is therefore critical. Moreover, as physical networks, met ros can be viewed as network topological entities, and as such they possess measurable network properties. In this paper, by using network science and graph theoretical concepts, we investigate both theoretical and experimental robustness metrics (i.e., the robustness indicator, the effective graph conductance, and the critical thresholds) and their performance in quantifying the robustness of metro networks under random failures or targeted attacks. We find that the theoretical metrics quantify different aspects of the robustness of metro networks. In particular, the robustness indicator captures the number of alternative paths and the effective graph conductance focuses on the length of each path. Moreover, the high positive correlation between the theoretical metrics and experimental metrics and the negative correlation within the theoretical metrics provide significant insights for planners to design more robust system while accommodating for transit specificities (e.g., alternative paths, fast transferring).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا