ترغب بنشر مسار تعليمي؟ اضغط هنا

We show the existence of some bouncing cosmological solutions in the braneworld scenario. More specifically, we consider a dynamical three-brane in the background of Born-Infeld and electrically charged Gauss-Bonnet black hole. We find that, in certa in range of parameter space, the brane universe, at least classically, never shrinks to a zero size, resulting in a singularity-free cosmology within the classical domain.
65 - Supratik Pal 2008
A new idea of deriving a cosmological term from an underlying theory has been proposed in order to explain the expansion history of the universe. We obtain the scale factor with this derived cosmological term and demonstrate that it reflects all the characteristics of the expanding universe in different era so as to result in a transition from inflation to late acceleration through intermediate decelerating phases by this single entity. We further discuss certain observational aspects of this paradigm.
57 - Supratik Pal 2008
We discuss certain features of cosmology in a generalised RS II braneworld scenario. In this scenario, the bulk is given by a Schwarzschild-anti de Sitter or a Vaidya-anti de Sitter black hole in which an FRW brane is consistently embedded, resulting in modifications of the 4-dimensional Friedmann equations. We analyse how the scenario can be visualised and discuss the significance of each term in these modified equations both for early time and for late time cosmology. We further analyse the perturbation equations, based on Newtonian as well as relativistic perturbations and show that the scenario has the potentiality to explain structure formation by the ``Weyl fluid arising from embedding geometry. The results thus obtained are confronted with observations as well.
63 - Supratik Pal 2008
We develop a technique to study relativistic perturbations in the generalised brane cosmological scenario, which is a generalisation of the multi-fluid cosmological perturbations to brane cosmology. The novelty of the technique lies in the inclusion of a radiative bulk which is responsible for bulk-brane energy exchange, and in turn, modifies the standard perturbative analysis to a great extent. The analysis involves a geometric fluid -- called the Weyl fluid -- whose nature and role have been studied extensively both for the empty bulk and the radiative bulk scenario. Subsequently, we find that this Weyl fluid can be a possible geometric candidate for dark matter in this generalised brane cosmological framework.
114 - Supratik Pal 2008
In this article, we develop a formalism which is different from the standard lensing scenario and is necessary for understanding lensing by gravitational fields which arise as solutions of the effective Einstein equations on the brane. We obtain gene ral expressions for measurable quantities such as time delay, deflection angle, Einstein ring and magnification. Subsequently, we estimate the deviations (relative to the standard lensing scenario) in the abovementioned quantities by considering the line elements for clusters and spiral galaxies obtained by solving the effective Einstein equations on the brane. Our analysis reveals that gravitational lensing can be a useful tool for testing braneworld gravity as well as the existence of extra dimensions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا