ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigated the magnitude-phase relation of (162173) 1999 JU3, a target asteroid for the JAXA Hayabusa 2 sample return mission. We initially employed the international Astronomical Unions H-G formalism but found that it fits less well using a sin gle set of parameters. To improve the inadequate fit, we employed two photometric functions, the Shevchenko and Hapke functions. With the Shevchenko function, we found that the magnitude-phase relation exhibits linear behavior in a wide phase angle range (alpha = 5-75 deg) and shows weak nonlinear opposition brightening at alpha< 5 deg, providing a more reliable absolute magnitude of Hv = 19.25 +- 0.03. The phase slope (0.039 +- 0.001 mag/deg) and opposition effect amplitude (parameterized by the ratio of intensity at alpha=0.3 deg to that at alpha=5 deg, I(0.3)/I(5)=1.31+-0.05) are consistent with those of typical C-type asteroids. We also attempted to determine the parameters for the Hapke model, which are applicable for constructing the surface reflectance map with the Hayabusa 2 onboard cameras. Although we could not constrain the full set of Hapke parameters, we obtained possible values, w=0.041, g=-0.38, B0=1.43, and h=0.050, assuming a surface roughness parameter theta=20 deg. By combining our photometric study with a thermal model of the asteroid (Mueller et al. in preparation), we obtained a geometric albedo of pv = 0.047 +- 0.003, phase integral q = 0.32 +- 0.03, and Bond albedo AB = 0.014 +- 0.002, which are commensurate with the values for common C-type asteroids.
We present the results of photometric observations carried out with four small telescopes of the asteroid 4 Vesta in the $B$, $R_{rm C}$, and $z$ bands at a minimum phase angle of 0.1 $timeform{D}$. The magnitudes, reduced to unit distance and zero p hase angle, were $M_{B}(1, 1, 0) = 3.83 pm 0.01, M_{R_{rm C}}(1, 1, 0) = 2.67 pm 0.01$, and $M_{z}(1, 1, 0) = 3.03 pm 0.01$ mag. The absolute magnitude obtained from the IAU $H$--$G$ function is $sim$0.1 mag darker than the magnitude at a phase angle of 0$timeform{D}$ determined from the Shevchenko function and Hapke models with the coherent backscattering effect term. Our photometric measurements allowed us to derive geometric albedos of 0.35 in the $B$ band, 0.41 in the $R_{rm C}$ band, and 0.31 in the $z$ bands by using the Hapke model with the coherent backscattering effect term. Using the Hapke model, the porosity of the optically active regolith on Vesta was estimated to be $rho$ = 0.4--0.7, yielding the bluk density of 0.9--2.0 $times$ $10^3$ kg $mathrm{m^{-3}}$. It is evident that the opposition effect for Vesta makes a contribution to not only the shadow-hiding effect, but also the coherent backscattering effect that appears from ca. $1timeform{D}$. The amplitude of the coherent backscatter opposition effect for Vesta increases with a brightening of reflectance. By comparison with other solar system bodies, we suggest that multiple-scattering on an optically active scale may contribute to the amplitude of the coherent backscatter opposition effect ($B_{C0}$).
We have observed the lightcurves of 13 V-type asteroids ((1933) Tinchen, (2011) Veteraniya, (2508) Alupka, (3657) Ermolova, (3900) Knezevic, (4005) Dyagilev, (4383) Suruga, (4434) Nikulin, (4796) Lewis, (6331) 1992 $mathrm{FZ_{1}}$, (8645) 1998 TN, ( 10285) Renemichelsen, and (10320) Reiland). Using these observations we determined the rotational rates of the asteroids, with the exception of Nikulin and Renemichelsen. The distribution of rotational rates of 59 V-type asteroids in the inner main belt, including 29 members of the Vesta family that are regarded as ejecta from the asteroid (4) Vesta, is inconsistent with the best-fit Maxwellian distribution. This inconsistency may be due to the effect of thermal radiation Yarkovsky--OKeefe--Radzievskii--Paddack (YORP) torques, and implies that the collision event that formed V-type asteroids is sub-billion to several billion years in age.
We present an asteroidal catalog from the mid-infrared wavelength region using the slow-scan observation mode obtained by the Infrared Camera (IRC) on-board the Japanese infrared satellite AKARI. An archive of IRC slow-scan observations comprising ab out 1000 images was used to search for serendipitous encounters of known asteroids. We have determined the geometric albedos and diameters for 88 main-belt asteroids, including two asteroids in the Hilda region, and compared these, where possible, with previously published values. Approximately one-third of the acquired data reflects new asteroidal information. Some bodies classified as C or D-type with high albedo were also identified in the catalog.
To examine the distribution of rotational rates for chips of asteroid 4 Vesta, lightcurve observation of seven V-type asteroids (2511 Patterson, 2640 Hallstorm, 2653 Principia, 2795 Lapage, 3307 Athabasca, 4147 Lennon, and 4977 Rauthgundis) were perf ormed from fall 2003 to spring 2004. Distribution of spin rates of V-type main-belt asteroids from the past and our observations have three peaks. This result implies that age of catastrophic impact making Vesta family may be not as young as Karin and Iannini families but as old as Eos and Koronis families.
We present the characterization and calibration of the Slow-Scan observation mode of the Far-Infrared Surveyor (FIS) onboard the AKARI satellite. The FIS, one of the two focal-plane instruments on AKARI, has four photometric bands between 50--180 um with two types of Ge:Ga array detectors. In addition to the All-Sky Survey, FIS has also taken detailed far-infrared images of selected targets by using the Slow-Scan mode. The sensitivity of the Slow-Scan mode is one to two orders of magnitude better than that of the All-Sky Survey, because the exposure time on a targeted source is much longer. The point spread functions (PSFs) were obtained by observing several bright point-like objects such as asteroids, stars, and galaxies. The derived full widths at the half maximum (FWHMs) are ~30 for the two shorter wavelength bands and ~40 for the two longer wavelength bands, being consistent with those expected by the optical simulation, although a certain amount of excess is seen in the tails of the PSFs. The flux calibration has been performed by the observations of well-established photometric calibration standards (asteroids and stars) in a wide range of fluxes. After establishing the method of aperture photometry, the photometric accuracy for point-sources is better than +-15% in all of the bands expect for the longest wavelength.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا