ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose a multicast scheduling scheme to exploit content reuse when there is asynchronicity in user requests. A unicast transmission setup is used for content delivery, while multicast transmission is employed opportunistically to reduce wireless resource usage. We then develop a multicast scheduling scheme for the downlink multiple-input multiple output orthogonal-frequency division multiplexing system in IEEE 802.11 wireless local area network (WLAN). At each time slot, the scheduler serves the users by either unicast or multicast transmission. Out-sequence data received by a user is stored in users cache for future use.Multicast precoding and user selection for multicast grouping are also considered and compliance with the IEEE 802.11 WLAN transmission protocol. The scheduling scheme is based on the Lyapunov optimization technique, which aims to maximize system rate. The resulting scheme has low complexity and requires no prior statistical information on the channels and queues. Furthermore, in the absence of channel error, the proposed scheme restricts the worst case of frame dropping deadline, which is useful for delivering real-time traffic. Simulation results show that our proposed algorithm outperforms existing techniques by 17 % to 35 % in term of user capacity.
Large-scale distributed-antenna system (L-DAS) with very large number of distributed antennas, possibly up to a few hundred antennas, is considered. A few major issues of the L-DAS, such as high latency, energy consumption, computational complexity, and large feedback (signaling) overhead, are identified. The potential capability of the L-DAS is illuminated in terms of an energy efficiency (EE) throughout the paper. We firstly and generally model the power consumption of an L-DAS, and formulate an EE maximization problem. To tackle two crucial issues, namely the huge computational complexity and large amount of feedback (signaling) information, we propose a channel-gain-based antenna selection (AS) method and an interference-based user clustering (UC) method. The original problem is then split into multiple subproblems by a cluster, and each clusters precoding and power control are managed in parallel for high EE. Simulation results reveal that i) using all antennas for zero-forcing multiuser multiple-input multiple-output (MU-MIMO) is energy inefficient if there is nonnegligible overhead power consumption on MU-MIMO processing, and ii) increasing the number of antennas does not necessarily result in a high EE. Furthermore, the results validate and underpin the EE merit of the proposed L-DAS complied with the AS, UC, precoding, and power control by comparing with non-clustering L-DAS and colocated antenna systems.
In wireless communication systems, the nonlinear effect and inefficiency of power amplifier (PA) have posed practical challenges for system designs to achieve high spectral efficiency (SE) and energy efficiency (EE). In this paper, we analyze the imp act of PA on the SE-EE tradeoff of orthogonal frequency division multiplex (OFDM) systems. An ideal PA that is always linear and incurs no additional power consumption can be shown to yield a decreasing convex function in the SE-EE tradeoff. In contrast, we show that a practical PA has an SE-EE tradeoff that has a turning point and decreases sharply after its maximum EE point. In other words, the Pareto-optimal tradeoff boundary of the SE-EE curve is very narrow. A wide range of SE-EE tradeoff, however, is desired for future wireless communications that have dynamic demand depending on the traffic loads, channel conditions, and system applications, e.g., high-SE-with-low-EE for rate-limited systems and high-EE-with-low-SE for energy-limited systems. For the SE-EE tradeoff improvement, we propose a PA switching (PAS) technique. In a PAS transmitter, one or more PAs are switched on intermittently to maximize the EE and deliver an overall required SE. As a consequence, a high EE over a wide range SE can be achieved, which is verified by numerical evaluations: with 15% SE reduction for low SE demand, the PAS between a low power PA and a high power PA can improve EE by 323%, while a single high power PA transmitter improves EE by only 68%.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا