ترغب بنشر مسار تعليمي؟ اضغط هنا

A proper theoretical description of electronic structure of the 3d orbitals in the metal centers of functional metalorganics is a challenging problem. In this letter, we apply density functional theory and an exact diagonalization method in a many bo dy approach to study the ground state electronic configuration of an iron porphyrin (FeP) molecule. Our study reveals that dynamical correlation effects are important, and FeP is a potential candidate for realizing a spin crossover due to a subtle balance of crystal field effects, on-site Coulomb repulsion and hybridization between the Fe d-orbitals and ligand N p-states. The mechanism of switching between two close lying electronic configurations of Fe-d orbitals is shown. We discuss the generality of the suggested approach and the possibility to properly describe the electronic structure and related low energy physics of the whole class of correlated metal centered organometallic molecules.
We present an investigation of the magnetic behavior of epitaxial MnAs films grown on GaAs(100). We address the dependence of the magnetic moment, ferromagnetic transition temperature ($T_c$) and magnetocrystalline anisotropy constants on epitaxial c onditions. From thorough structural and magnetic investigations, our findings indicate a more complex relationship between strain and magnetic properties in MnAs films than a simple stretch/compression of the unit cell axes. While a small increase is seen in the anisotropy constants the enhancement of the magnetic moment at saturation is significant. X-ray magnetic circular dichroism results show a behavior of the spin- and orbital-moment which is consistent with a structural transition at $T_c$. In particular, we find that the ratio of the orbital to spin moment shows a marked increase in the coexistence region of the ferromagnetic $alpha$- and paramagnetic $beta$-phases, a result that is well in accord with the observed increase of the $c/a$-ratio in the same temperature region. The textit{ab initio} density functional calculations reveal that the magnetic properties are more sensitive towards change in in-plane axis as compared to a change of the out-of-plane axis, which is explained by the analysis of band structures. The effects of electron correlation in MnAs using textit{ab initio} dynamical mean field theory are also presented.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا