ترغب بنشر مسار تعليمي؟ اضغط هنا

102 - Rajesh Mondal 2014
The Epoch of Reionization (EoR) 21-cm signal is expected to become increasingly non-Gaussian as reionization proceeds. We have used semi-numerical simulations to study how this affects the error predictions for the EoR 21-cm power spectrum. We expect $SNR=sqrt{N_k}$ for a Gaussian random field where $N_k$ is the number of Fourier modes in each $k$ bin. We find that non-Gaussianity is important at high $SNR$ where it imposes an upper limit $[SNR]_l$. For a fixed volume $V$, it is not possible to achieve $SNR > [SNR]_l$ even if $N_k$ is increased. The value of $[SNR]_l$ falls as reionization proceeds, dropping from $sim 500$ at $bar{x}_{HI} = 0.8-0.9$ to $sim 10$ at $bar{x}_{HI} = 0.15 $ for a $[150.08, {rm Mpc}]^3$ simulation. We show that it is possible to interpret $[SNR]_l$ in terms of the trispectrum, and we expect $[SNR]_l propto sqrt{V}$ if the volume is increased. For $SNR ll [SNR]_l$ we find $SNR = sqrt{N_k}/A $ with $A sim 0.95 - 1.75$, roughly consistent with the Gaussian prediction. We present a fitting formula for the $SNR$ as a function of $N_k$, with two parameters $A$ and $[SNR]_l$ that have to be determined using simulations. Our results are relevant for predicting the sensitivity of different instruments to measure the EoR 21-cm power spectrum, which till date have been largely based on the Gaussian assumption.
61 - Suman Majumdar 2014
We present a detailed comparison of three different simulations of the epoch of reionization (EoR). The radiative transfer simulation (${rm C}^2$-RAY) among them is our benchmark. Radiative transfer codes can produce realistic results, but are comput ationally expensive. We compare it with two semi-numerical techniques: one using the same halos as ${rm C}^2$-RAY as its sources (Sem-Num), and one using a conditional Press-Schechter scheme (CPS+GS). These are vastly more computationally efficient than ${rm C}^2$-RAY, but use more simplistic physical assumptions. We evaluate these simulations in terms of their ability to reproduce the history and morphology of reionization. We find that both Sem-Num and CPS+GS can produce an ionization history and morphology that is very close to ${rm C}^2$-RAY, with Sem-Num performing slightly better compared to CPS+GS. We also study different redshift space observables of the 21-cm signal from EoR: the variance, power spectrum and its various angular multipole moments. We find that both semi-numerical models perform reasonably well in predicting these observables at length scales relevant for present and future experiments. However, Sem-Num performs slightly better than CPS+GS in producing the reionization history, which is necessary for interpreting the future observations.
The detection of ionized bubbles around quasars in redshifted 21-cm maps is possibly one of the most direct future probes of reionization. We consider two models for the growth of spherical ionized bubbles to study the apparent shapes of the bubbles in redshifted 21-cm maps, taking into account the finite light travel time (FLTT) across the bubble. We find that the FLTT, whose effect is particularly pronounced for large bubbles, causes the bubbles image to continue to grow well after its actual growth is over. There are two distinct FLTT distortions in the bubbles image: (i) its apparent center is shifted along the line of sight (LOS) towards the observer from the quasar; (ii) its shape is anisotropic along the LOS. The bubble initially appears elongated along the LOS. This is reversed in the later stages of growth where the bubble appears compressed. The FLTT distortions are expected to have an impact on matched filter bubble detection where it is most convenient to use a spherical template for the filter. We find that the best matched spherical filter gives a reasonably good estimate of the size and the shift in the center of the anisotropic image. The mismatch between the spherical filter and the anisotropic image causes a 10 - 20% degradation in the SNR relative to that of a spherical bubble. We conclude that a spherical filter is adequate for bubble detection. The FLTT distortions do not effect the lower limits for bubble detection with 1000 hr of GMRT observations. The smallest spherical filter for which a detection is possible has comoving radii 24 Mpc and 33 Mpc for a 3-sigma and 5-sigma detection respectively, assuming a neutral fraction 0.6 at z sim 8.
125 - Kanan K. Datta 2008
Extending the formalism of Datta, Bharadwaj & Choudhury (2007) for detecting ionized bubbles in redshifted 21 cm maps using a matched-filtering technique, we use different simulations to analyze the impact of HI fluctuations outside the bubble on the detectability of the bubble. In the first three kinds of simulations there is a spherical bubble of comoving radius R_b, the one that we are trying to detect, located at the center, and the neutral hydrogen (HI) outside the bubble traces the underlying dark matter distribution. We consider three different possible scenarios of reionization, i.e., (i) there is a single bubble (SB) in the field of view (FoV) and the hydrogen neutral fraction is constant outside this bubble (ii) patchy reionization with many small ionized bubbles in the FoV (PR1) and (iii) many spherical ionized bubbles of the same radius $R_b$ (PR2). The fourth kind of simulation uses more realistic maps based on semi-numeric modelling (SM) of ionized regions. We find that for both the SB and PR1 scenarios the fluctuating IGM restricts bubble detection to size R_b<= 6 Mpc and R_b<= 12 Mpc for the GMRT and the MWA respectively, however large be the integration time. These results are well explained by analytical predictions. Large uncertainty due to the HI fluctuations restricts bubble detection in the PR2 scenario for neutral fraction x_HI<0.6. The matched-filter technique works well even when the targeted ionized bubble is non-spherical due to surrounding bubbles and inhomogeneous recombination (SM). We find that determining the size and positions of the bubbles is not limited by the HI fluctuations in the SB and PR1 scenario but limited by the instruments angular resolution instead, and this can be done more precisely for larger bubble (abridged).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا