ترغب بنشر مسار تعليمي؟ اضغط هنا

Proton-proton ($pp$) collision has been considered as a baseline to study the system produced in relativistic heavy-ion (AA) collisions with the basic assumption that no thermal medium is formed in $pp$ collisions. This warrants a cautious analysis o f the system produced in $pp$ collisions at relativistic energies.In this work we investigate the charmonium suppression in $pp$ collisions at $sqrt{s} = 7$ and $13$ TeV to inspect the system formed in these collisions. In this work, charmonium suppression has been studied for various event multiplicities and transverse momenta by including the mechanisms of color screening, gluonic dissociation, collisional damping along with the regeneration due to correlated $cbar c$ pairs. Here we obtain a net suppression of charmonia at high-multiplicity events indicating the possibility towards the formation of quark-gluon plasma in $pp$ collisions.
Non-central heavy-ion collisions at ultra-relativistic energies are unique in producing magnetic fields of the largest strength in the laboratory. Such fields being produced at the early stages of the collision, could affect the properties of Quantum Chromodynamics (QCD) matter formed in the relativistic heavy-ion collisions. The transient magnetic field leaves its reminiscence, which in principle, can affect the thermodynamic and transport properties of the final state dynamics of the system. In this work, we study the thermodynamic properties of a hadron gas in the presence of an external static magnetic field using a thermodynamically consistent non-extensive Tsallis distribution function. Various thermodynamical observables such as polytropic index, energy density ($epsilon$), entropy density ($s$), pressure ($P$) and speed of sound ($c_{rm s}$) are studied. Investigation of magnetization ($M$) is also performed and this analysis reveals an interplay of diamagnetic and paramagnetic nature of the system in presence of the magnetic field of varying strength. Further to understand the system dynamics under equilibrium and non-equilibrium conditions, the effect of non-extensive parameter ($q$) on the above observables is also studied.
The possibility of formation of Bose-Einstein Condensation (BEC) is studied in $pp$ collisions at $sqrt s$ = 7 TeV at the Large Hadron Collider. A thermodynamically consistent non-extensive formulation of the identified hadron transverse momentum dis tributions is used to estimate the critical temperature required to form BEC of charged pions, which are the most abundant species in a multi-particle production process in hadronic and nuclear collisions. The obtained results have been contrasted with the systems produced in Pb-Pb collisions to have a better understanding. We observe an explicit dependency of BEC critical temperature and number of particles in the pion condensates on the non-extensive parameter $q$, which is a measure of degree of non-equilibrium -- as $q$ decreases, the critical temperature increases and approaches to the critical temperature obtained from Bose-Einstein statistics without non-extensivity. Studies are performed on the final state multiplicity dependence of number of particles in the pion condensates in a wide range of multiplicity covering hadronic and heavy-ion collisions, using the inputs from experimental transverse momentum spectra.
Heavy-flavored hadrons are unique probes to study the properties of hot and dense QCD medium produced in ultra-relativistic heavy-ion collisions at RHIC and the LHC. Transverse spherocity is one of the event-topology variables used to separate jetty and isotropic events from the pool of event samples. This study aims to understand the production dynamics of heavy-flavors through the transverse momentum spectra, double differential yield and mean transverse momentum of J/$psi$, $rm D^{0}$ and $Lambda_{c}^{+}$ as a function of charged-particle multiplicity and transverse spherocity. Further to investigate the possibility of hardonization of the charm quarks, transverse spherocity dependence ratios like $Lambda_{c}^{+}$/$rm D^{0}$ and $Lambda^{0}$/$K^{-}$ are studied. For the current analysis, the events are generated by using 4C tuned PYTHIA8 for pp at $sqrt{s}$ = 13 TeV, which is quite successful in explaining the heavy-flavor particle production at the LHC energies.
The high-multiplicity pp collisions at the Large Hadron Collider energies with various heavy-ion-like signatures have warranted a deeper understanding of the underlying physics and particle production mechanisms. It is a common practice to use experi mental data on the hadronic transverse momentum ($p_T$) spectra to extract thermodynamical properties of the system formed in heavy ion and high multiplicity pp collisions. The non-availability of event topology dependent experimental data for pp collisions at $sqrt{s}$ = 13 TeV on the spectra of non-strange and strange hadrons constrains us to use the PYTHIA8 simulated numbers to extract temperature-like parameters to study the event shape and multiplicity dependence of specific heat capacity, conformal symmetry breaking measure (CSBM) and speed of sound. The observables show a clear dependence on event multiplicity and event topology. Thermodynamics of the system is largely governed by the light particles because of their relatively larger abundances. In this regards, a threshold in the particle production, $rm N_{ch} simeq$ (10-20) in the final state multiplicity emerges out from the present study, confirming some of the earlier findings in this direction. As for heavier hadrons with relatively small abundances, a similar threshold is observed for $langle rm N_{ch} rangle simeq$ 40 hinting towards formation of a thermal bath where all the heavier hadrons are in equilibrium.
Protection against dc faults is one of the main technical hurdles faced when operating converter-based HVdc systems. Protection becomes even more challenging for multi-terminal dc (MTdc) systems with more than two terminals/converter stations. In thi s paper, a hybrid primary fault detection algorithm for MTdc systems is proposed to detect a broad range of failures. Sensor measurements, i.e., line currents and dc reactor voltages measured at local terminals, are first processed by a top-level context clustering algorithm. For each cluster, the best fault detector is selected among a detector pool according to a rule resulting from a learning algorithm. The detector pool consists of several existing detection algorithms, each performing differently across fault scenarios. The proposed hybrid primary detection algorithm: i) detects all major fault types including pole-to-pole (P2P), pole-to-ground (P2G), and external dc fault; ii) provides a wide detection region covering faults with various fault locations and impedances; iii) is more robust to noisy sensor measurements compared to the existing methods. Performance and effectiveness of the proposed algorithm are evaluated and verified based on time-domain simulations in the PSCAD/EMTDC software environment. The results confirm satisfactory operation, accuracy, and detection speed of the proposed algorithm under various fault scenarios.
This paper discusses a novel fault location approach using single ended measurement. The natural dissipation of the circuit parameters are considered for fault location. A relationship between the damped natural frequency of oscillation of the transm ission line current and fault location is established in this paper. The hybrid dc circuit breaker (dcCB) interrupts the fault current and the line current attenuates under the absence of any driving voltage source. The line capacitance discharges into the fault at a specific frequency of oscillation and rate of attenuation. Utilizing this information, the fault location in a multi-terminal direct current (MTdc) network can be predicted. A three terminal radial model of a MTdc is used for performance evaluation of the proposed method using Power System Computer Aided Design (PSCAD)/Electromagnetic Transients including dc (EMTdc).
Modular multilevel converters (MMCs) are widely used in the design of modern high-voltage direct current (HVdc) transmission system. High-fidelity dynamic models of MMCs-based HVdc system require small simulation time step and can be accurately model ed in electro-magnetic transient (EMT) simulation programs. The EMT program exhibits slow simulation speed and limitation on the size of the model and brings certain challenges to test the high-fidelity HVdc model in system-level simulations. This paper presents the design and implementation of a hybrid simulation framework, which enables the co-simulation of the EMT model of Atlanta-Orlando HVdc line and the transient stability (TS) model of the entire Eastern Interconnection system. This paper also introduces the implementation of two high-fidelity HVdc line models simulated at different time steps and discusses a dedicated method for sizing the buffer areas on both sides of the HVdc line. The simulation results of the two HVdc models with different sizes of buffer areas are presented and compared.
Recent studies reveal that at high energies, collisions of small system like $p+p$ gives signatures similar to that widely observed in heavy ion collisions hinting towards a possibility of forming a medium with collective behaviour. With this motivat ion, we have used the Glauber model, which is traditionally applied to heavy ion collisions, in small system using anisotropic and inhomogeneous density profile of proton and found that the proposed model reproduces the charged particle multiplicity distribution of $p+p$ collisions at LHC energies very well. Collision geometric properties like mean impact parameter, mean number of binary collisions ($langle N_{coll} rangle$) and mean number of participants ($langle N_{part} rangle$) at different multiplicities are determined. Having estimated $langle N_{coll} rangle$, we have calculated nuclear modification-like factor ($R_{HL}$) in $p+p$ collisions. We also estimated eccentricity and elliptic flow as a function of charged particle multiplicity using the linear response to initial geometry.
High-multiplicity pp collisions at the Large Hadron Collider (LHC) energies have created special importance in view of the Underlying Event (UE) observables. The recent results of LHC, such as long range angular correlation, flow-like patterns, stran geness enhancement etc. in high multiplicity events are not yet completely understood. In the same direction, the understanding of multiplicity dependence of J/$psi$ production is highly necessary. Transverse spherocity, which is an event shape variable, helps to investigate the particle production by isolating the hard and the soft components. In the present study, we have investigated the multiplicity dependence of J/$psi$ production at mid-rapidity and forward rapidity through the transverse spherocity analysis and tried to understand the role of jets by separating the isotropic and jetty events from the minimum bias collisions. We have analyzed the J/$psi$ production at the mid-rapidity and forward rapidities via dielectron and dimuon channels, respectively using 4C tuned PYTHIA8 event generator. The analysis has been performed in two different center-of-mass energies: $sqrt{s}$ = 5.02 and 13 TeV, to see the energy dependence of jet contribution to the multiplicity dependence study of J/$psi$ production. Furthermore, we have studied the production dynamics through the dependence of thermodynamic parameters on event multiplicity and transverse spherocity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا