ترغب بنشر مسار تعليمي؟ اضغط هنا

Using the multi-wavelength data from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) spacecraft, we study a jet occurred in coronal hole near the northern pole of the Sun. The jet presented distinct helical upward motion during ejection. By tracking six identified moving features (MFs) in the jet, we found that the plasma moved at an approximately constant speed along the jets axis, meanwhile, they made a circular motion in the plane transverse to the axis. Inferred from linear and trigonometric fittings to the axial and transverse heights of the six tracks, the mean values of axial velocities, transverse velocities, angular speeds, rotation periods, and rotation radiuses of the jet are 114 km s$^{-1}$, 136 km s$^{-1}$, 0.81degr s$^{-1}$, 452 s, and 9.8 $times$ 10$^{3}$ km respectively. As the MFs rose, the jet width at the corresponding height increased. For the first time, we derived the height variation of the longitudinal magnetic field strength in the jet from the assumption of magnetic flux conservation. Our results indicate that, at the heights of 1 $times$ 10$^{4}$ $sim$ 7 $times$ 10$^{4}$ km from jet base, the flux density in the jet decreased from about 15 to 3 G as a function of B=0.5(R/R$_{sun}$-1)$^{-0.84}$ (G). A comparison was made with the other results in previous studies.
Taking advantage of both the high temporal and spatial resolution of the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO), we studied a limb coronal shock wave and its associated extreme ultraviolet (EUV) wave that occ urred on 2010 June 13. Our main findings are (1) the shock wave appeared clearly only in the channels centered at 193 AA and 211 AA as a dome-like enhancement propagating ahead of its associated semi-spherical CME bubble; (2) the density compression of the shock is 1.56 according to radio data and the temperature of the shockis around 2.8 MK; (3) the shock wave first appeared at 05:38 UT, 2 minutes after the associated flare has started and 1 minute after its associated CME bubble appeared;(4) the top of the dome-like shock wave set out from about 1.23 Rodot and the thickness of the shocked layer is ~ 2times10^4 km; (5) the speed of the shock wave is consistent with a slight decrease from about 600 km/s to 550 km/s; (6) the lateral expansion of the shock wave suggests a constant speed around 400 km/s, which varies at different heights and directions. Our findings support the view that the coronal shock wave is driven by the CME bubble, and the on-limb EUV wave is consistent with a fast wave or at least includes the fast wave component.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا