ترغب بنشر مسار تعليمي؟ اضغط هنا

Current research on micro-mechanical resonators strives for quantum-limited detection of the motion of macroscopic objects. Prerequisite to this goal is the observation of measurement backaction consistent with quantum metrology limits. However, ther mal noise presently dominates measurements and precludes ground-state preparation of the resonator. Here we establish the collective motion of an ultracold atomic gas confined tightly within a Fabry-Perot optical cavity as a system for investigating the quantum mechanics of macroscopic bodies. The cavity-mode structure selects a single collective vibrational mode that is measured by the cavitys optical properties, actuated by the cavity optical field, and subject to backaction by the quantum force fluctuations of this field. Experimentally, we quantify such fluctuations by measuring the cavity-light-induced heating of the intracavity atomic ensemble. These measurements represent the first observation of backaction on a macroscopic mechanical resonator at the standard quantum limit.
We report on Kerr nonlinearity and dispersive optical bistability of a Fabry-Perot optical resonator due to the displacement of ultracold atoms trapped within. In the driven resonator, such collective motion is induced by optical forces acting upon u p to $10^5$ $^{87}$Rb atoms prepared in the lowest band of a one-dimensional intracavity optical lattice. The longevity of atomic motional coherence allows for strongly nonlinear optics at extremely low cavity photon numbers, as demonstrated by the observation of both branches of optical bistability at photon numbers below unity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا