ترغب بنشر مسار تعليمي؟ اضغط هنا

We use a stochastic Markovian dynamics approach to describe the spreading of vector-transmitted diseases, like dengue, and the threshold of the disease. The coexistence space is composed by two structures representing the human and mosquito populatio ns. The human population follows a susceptible-infected-recovered (SIR) type dynamics and the mosquito population follows a susceptible-infected-susceptible (SIS) type dynamics. The human infection is caused by infected mosquitoes and vice-versa so that the SIS and SIR dynamics are interconnected. We develop a truncation scheme to solve the evolution equations from which we get the threshold of the disease and the reproductive ratio. The threshold of the disease is also obtained by performing numerical simulations. We found that for certain values of the infection rates the spreading of the disease is impossible whatever is the death rate of infected mosquito.
Nonextensive statistical mechanics has been a source of investigation in mathematical structures such as deformed algebraic structures. In this work, we present some consequences of $q$-operations on the construction of $q$-numbers for all numerical sets. Based on such a construction, we present a new product that distributes over the $q$-sum. Finally, we present different patterns of $q$-Pascals triangles, based on $q$-sum, whose elements are $q$-numbers.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا