ترغب بنشر مسار تعليمي؟ اضغط هنا

We have calculated the relativistic reflection component of the X-ray spectra of accretion disks in active galactic nuclei (AGN). Our calculations have shown that the spectra can be significantly modified by the motion of the accretion flow and the g ravity and rotation of the central black hole. The absorption edges in the spectra suffer severe energy shifts and smearing, and the degree of distortion depends on the system parameters, in particular, the inner radius of the accretion disk and the disk viewing inclination angles. The effects are significant. Fluorescent X-ray emission lines from the inner accretion disk could be powerful diagnostic of space-time distortion and dynamical relativistic effects near the event horizons of accreting black holes. However, improper treatment of the reflection component in fitting the X-ray continuum could give rise to spurious line-like features. These features mimic the true fluorescent emission lines and may mask their relativistic signatures. Fully relativistic models for reflection continua together with the emission lines are needed in order to extract black-hole parameters from the AGN X-ray spectra.
We present a convariant formulation for radiative transfer in curved space time and demonstrate some applications in the black-hole systems. We calculate the emission from semi-transparent accretion tori around black holes, for opacity provided by th e Fe K lines and for opacity dominated by electron scattering. We also calculate the emission from radiative inefficient accretion flow in black holes with opacity provided by electron-positron annihilation lines. Finally we show shadows cast by accreting black holes with different spins and with different distribution of warm material around them.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا