ترغب بنشر مسار تعليمي؟ اضغط هنا

The dynamics of the core of the Sagittarius (Sgr) dwarf spheroidal (dSph) galaxy are explored using high-resolution (R~22,500), H-band, near-infrared spectra of over 1,000 giant stars in the central 3 deg^2 of the system, of which 328 are identified as Sgr members. These data, among some of the earliest observations from the SDSS-III/Apache Point Observatory Galactic Evolution Experiment (APOGEE) and the largest published sample of high resolution Sgr dSph spectra to date, reveal a distinct gradient in the velocity dispersion of Sgr from 11-14 km/s for radii >0.8 degrees from center to a dynamical cold point of 8 km/s in the Sgr center --- a trend differing from that found in previous kinematical analyses of Sgr over larger scales that suggest a more or less flat dispersion profile at these radii. Well-fitting mass models with either cored and cusped dark matter distributions can be found to match the kinematical results, although the cored profile succeeds with significantly more isotropic stellar orbits than required for a cusped profile. It is unlikely that the cold point reflects an unusual mass distribution. The dispersion gradient may arise from variations in the mixture of populations with distinct kinematics within the dSph; this explanation is suggested (e.g., by detection of a metallicity gradient across similar radii), but not confirmed, by the present data. Despite these remaining uncertainties about their interpretation, these early test data (including some from instrument commissioning) demonstrate APOGEEs usefulness for precision dynamical studies, even for fields observed at extreme airmasses.
Commissioning observations with the Apache Point Observatory Galactic Evolution Experiment (APOGEE), part of the Sloan Digital Sky Survey III, have produced radial velocities (RVs) for ~4700 K/M-giant stars in the Milky Way bulge. These high-resoluti on (R sim 22,500), high-S/N (>100 per resolution element), near-infrared (1.51-1.70 um; NIR) spectra provide accurate RVs (epsilon_v~0.2 km/s) for the sample of stars in 18 Galactic bulge fields spanning -1<l<20 deg, |b|<20 deg, and dec>-32 deg. This represents the largest NIR high-resolution spectroscopic sample of giant stars ever assembled in this region of the Galaxy. A cold (sigma_v~30 km/s), high-velocity peak (V_GSR sim +200 km/s) is found to comprise a significant fraction (~10%) of stars in many of these fields. These high RVs have not been detected in previous MW surveys and are not expected for a simple, circularly rotating disk. Preliminary distance estimates rule out an origin from the background Sagittarius tidal stream or a new stream in the MW disk. Comparison to various Galactic models suggests that these high RVs are best explained by stars in orbits of the Galactic bar potential, although some observational features remain unexplained.
We have assembled a large-area spectroscopic survey of giant stars in the Sagittarius (Sgr) dwarf galaxy core. Using medium resolution (R ~15,000), multifiber spectroscopy we have measured velocities of these stars, which extend up to 12 degrees from the galaxys center (3.7 core radii or 0.4 times the King limiting radius). From these high quality spectra we identify 1310 Sgr members out of 2296 stars surveyed distributed across 24 different fields across the Sgr core. Additional slit spectra were obtained of stars bridging from the Sgr core to its trailing tail. Our systematic, large area sample shows no evidence for significant rotation, a result at odds with the ~20 km/s rotation required as an explanation for the bifurcation seen in the Sgr tidal stream; the observed small (<= 4 km/s) velocity trend along primarily the major axis is consistent with models of the projected motion of an extended body on the sky with no need for intrinsic rotation. The Sgr core is found to have a flat velocity dispersion (except for a kinematically colder center point) across its surveyed extent and into its tidal tails, a property that matches the velocity dispersion profiles measured for other Milky Way dwarf spheroidal (dSph) galaxies. We comment on the possible significance of this observed kinematical similarity for the dynamical state of the other classical Milky Way dSphs in light of the fact that Sgr is clearly a strongly tidally disrupted system.
[Abridged] We present a medium-resolution spectroscopic survey of late-type giant stars at mid-Galactic latitudes of (30$^{circ}<|b|<60^{circ}$), designed to probe the properties of this population to distances of $sim$9 kpc. Because M giants are gen erally metal-rich and we have limited contamination from thin disk stars by the latitude selection, most of the stars in the survey are expected to be members of the thick disk ($<$[Fe/H]$>sim$-0.6) with some contribution from the metal-rich component of the nearby halo. Here we report first results for 1799 stars. The distribution of radial velocity (RV) as a function of l for these stars shows (1) the expected thick disk population and (2) local metal-rich halo stars moving at high speeds relative to the disk, that in some cases form distinct sequences in RV-$l$ space. High-resolution echelle spectra taken for 34 of these RV outliers reveal the following patterns across the [Ti/Fe]-[Fe/H] plane: seventeen of the stars have abundances reminiscent of the populations present in dwarf satellites of the Milky Way; eight have abundances coincident with those of the Galactic disk and more metal-rich halo; and nine of the stars fall on the locus defined by the majority of stars in the halo. The chemical abundance trends of the RV outliers suggest that this sample consists predominantly of stars accreted from infalling dwarf galaxies. A smaller fraction of stars in the RV outlier sample may have been formed in the inner Galaxy and subsequently kicked to higher eccentricity orbits, but the sample is not large enough to distinguish conclusively between this interpretation and the alternative that these stars represent the tail of the velocity distribution of the thick disk. Our data do not rule out the possibility that a minority of the sample could have formed from gas {it in situ} on their current orbits.
We use observations from the ACS study of Galactic globular clusters to investigate the spatial distribution of the inner regions of the disrupting Sagittarius dwarf spheroidal galaxy (Sgr). We combine previously published analyses of four Sgr member clusters located near or in the Sgr core (M54, Arp 2, Terzan 7 and Terzan 8) with a new analysis of diffuse Sgr material identified in the background of five low-latitude Galactic bulge clusters (NGC 6624, 6637, 6652, 6681 and 6809) observed as part of the ACS survey. By comparing the bulge cluster CMDs to our previous analysis of the M54/Sgr core, we estimate distances to these background features. The combined data from four Sgr member clusters and five Sgr background features provides nine independent measures of the Sgr distance and, as a group, provide uniformly measured and calibrated probes of different parts of the inner regions of Sgr spanning twenty degrees over the face of the disrupting dwarf. This allows us, for the first time, to constrain the three dimensional orientation of Sgrs disrupting core and globular cluster system and compare that orientation to the predictions of an N-body model of tidal disruption. The density and distance of Sgr debris is consistent with models that favor a relatively high Sgr core mass and a slightly greater distance (28-30 kpc, with a mean of 29.4 kpc). Our analysis also suggests that M54 is in the foreground of Sgr by ~2 kpc, projected on the center of the Sgr dSph. While this would imply a remarkable alignment of the cluster and the Sgr nucleus along the line of sight, we can not identify any systematic effect in our analysis that would falsely create the measured 2 kpc separation. Finally, we find that the cluster Terzan 7 has the most discrepant distance (25 kpc) among the four Sgr core clusters, which may suggest a different dynamical history than the other Sgr core clusters.
The Milky Way (MW) remains a primary laboratory for understanding the structure and evolution of spiral galaxies, but typically we are denied clear views of MW stellar populations at low Galactic latitudes because of extinction by interstellar dust. However, the combination of 2MASS near-infrared (NIR) and Spitzer-IRAC mid-infrared (MIR) photometry enables a powerful method for determining the line of sight reddening to any star: the sampled wavelengths lie in the Rayleigh-Jeans part of the spectral energy distribution of most stars, where, to first order, all stars have essentially the same intrinsic color. Thus, changes in stellar NIR-MIR colors due to interstellar reddening are readily apparent, and (under an assumed extinction law) the observed colors and magnitudes of stars can be easily and accurately restored to their intrinsic values, greatly increasing their usefulness for Galactic structure studies. In this paper we explore this Rayleigh-Jeans Color Excess (RJCE) method and demonstrate that use of even a simple variant of the RJCE method based on a single reference color, (H-[4.5um]), can rather accurately remove dust effects from previously uninterpretable 2MASS color-magnitude diagrams of stars in fields along the heavily reddened Galactic mid-plane, with results far superior to those derived from application of other dereddening methods. We also show that total Galactic midplane extinction looks rather different from that predicted using 100um emission maps from the IRAS/ISSA and COBE/DIRBE instruments as presented by Schlegel et al. Instead, the Galactic mid-plane extinction strongly resembles the distribution of 13-CO (J=1->0) emission. Future papers will focus on refining the RJCE method and applying the technique to understand better not only dust and its distribution, but the distribution of stars intermixed with the dust in the low-latitude Galaxy.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا