ترغب بنشر مسار تعليمي؟ اضغط هنا

By moving a depth sensor around a room, we compute a 3D CAD model of the environment, capturing the room shape and contents such as chairs, desks, sofas, and tables. Rather than reconstructing geometry, we match, place, and align each object in the s cene to thousands of CAD models of objects. In addition to the fully automatic system, the key technical contribution is a novel approach for aligning CAD models to 3D scans, based on deep reinforcement learning. This approach, which we call Learning-based ICP, outperforms prior ICP methods in the literature, by learning the best points to match and conditioning on object viewpoint. LICP learns to align using only synthetic data and does not require ground truth annotation of object pose or keypoint pair matching in real scene scans. While LICP is trained on synthetic data and without 3D real scene annotations, it outperforms both learned local deep feature matching and geometric based alignment methods in real scenes. The proposed method is evaluated on real scenes datasets of SceneNN and ScanNet as well as synthetic scenes of SUNCG. High quality results are demonstrated on a range of real world scenes, with robustness to clutter, viewpoint, and occlusion.
Given a single photo of a room and a large database of furniture CAD models, our goal is to reconstruct a scene that is as similar as possible to the scene depicted in the photograph, and composed of objects drawn from the database. We present a comp letely automatic system to address this IM2CAD problem that produces high quality results on challenging imagery from interior home design and remodeling websites. Our approach iteratively optimizes the placement and scale of objects in the room to best match scene renderings to the input photo, using image comparison metrics trained via deep convolutional neural nets. By operating jointly on the full scene at once, we account for inter-object occlusions. We also show the applicability of our method in standard scene understanding benchmarks where we obtain significant improvement.
Given an Internet photo collection of a landmark, we compute a 3D time-lapse video sequence where a virtual camera moves continuously in time and space. While previous work assumed a static camera, the addition of camera motion during the time-lapse creates a very compelling impression of parallax. Achieving this goal, however, requires addressing multiple technical challenges, including solving for time-varying depth maps, regularizing 3D point color profiles over time, and reconstructing high quality, hole-free images at every frame from the projected profiles. Our results show photorealistic time-lapses of skylines and natural scenes over many years, with dramatic parallax effects.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا