ترغب بنشر مسار تعليمي؟ اضغط هنا

The development of low-resistance source/drain contacts to transition metal dichalcogenides (TMDCs) is crucial for the realization of high-performance logic components. In particular, efficient hole contacts are required for the fabrication of p-type transistors with MoS2, a model TMDC. Previous studies have shown that the Fermi level of elemental metals is pinned close to the conduction band of MoS2, thus resulting in large Schottky barrier heights for holes with limited hole injection from the contacts. Here, we show that substoichiometric molybdenum trioxide (MoOx, x<3), a high workfunction material, acts as an efficient hole injection layer to MoS2 and WSe2. In particular, we demonstrate MoS2 p-type field-effect transistors and diodes by using MoOx contacts. We also show drastic on-current improvement for p-type WSe2 FETs with MoOx contacts over devices made with Pd contacts, which is the prototypical metal used for hole injection. The work presents an important advance in contact engineering of TMDCs and will enable future exploration of their performance limits and intrinsic transport properties.
We report high performance p-type field-effect transistors based on single layered (thickness, ~0.7 nm) WSe2 as the active channel with chemically doped source/drain contacts and high-{kappa} gate dielectrics. The top-gated monolayer transistors exhi bit a high effective hole mobility of ~250 cm2/Vs, perfect subthreshold swing of ~60 mV/dec, and ION/IOFF of >10^6 at room temperature. Special attention is given to lowering the contact resistance for hole injection by using high work function Pd contacts along with degenerate surface doping of the contacts by patterned NO2 chemisorption on WSe2. The results here present a promising material system and device architecture for p-type monolayer transistors with excellent characteristics.
We show that Wolf et al.s 2011 analysis in Class. Quant. Grav. v28, 145017 does not support their conclusions, in particular that there is no redshift effect in atom interferometers except in inconsistent dual Lagrangian formalisms. Wolf et al. misap ply both Schiffs conjecture and the results of their own analysis when they conclude that atom interferometers are tests of the weak equivalence principle which only become redshift tests if Schiffs conjecture is invalid. Atom interferometers are direct redshift tests in any formalism.
We investigate leading order deviations from general relativity that violate the Einstein equivalence principle in the gravitational standard model extension. We show that redshift experiments based on matter waves and clock comparisons are equivalen t to one another. Consideration of torsion balance tests, along with matter wave, microwave, optical, and Mossbauer clock tests, yields comprehensive limits on spin-independent Einstein equivalence principle-violating standard model extension terms at the $10^{-6}$ level.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا