ترغب بنشر مسار تعليمي؟ اضغط هنا

Several previous works have investigated the circumstances under which quantum adiabatic optimization algorithms can tunnel out of local energy minima that trap simulated annealing or other classical local search algorithms. Here we investigate the e ven more basic question of whether adiabatic optimization algorithms always succeed in polynomial time for trivial optimization problems in which there are no local energy minima other than the global minimum. Surprisingly, we find a counterexample in which the potential is a single basin on a graph, but the eigenvalue gap is exponentially small as a function of the number of vertices. In this counterexample, the ground state wavefunction consists of two lobes separated by a region of exponentially small amplitude. Conversely, we prove if the ground state wavefunction is single-peaked then the eigenvalue gap scales at worst as one over the square of the number of vertices.
134 - Stephen P. Jordan 2013
It is well-known that deciding equivalence of logic circuits is a coNP-complete problem. As a corollary, the problem of deciding weak equivalence of reversible circuits, i.e. ignoring the ancilla bits, is also coNP-complete. The complexity of decidin g strong equivalence, including the ancilla bits, is less obvious and may depend on gate set. Here we use Barringtons theorem to show that deciding strong equivalence of reversible circuits built from the Fredkin gate is coNP-complete. This implies coNP-completeness of deciding strong equivalence for other commonly used universal reversible gate sets, including any gate set that includes the Toffoli or Fredkin gate.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا